

## Phase 2 Site Investigation

NEIGHBOURHOOD CENTRE, HOGWOOD FARM (FINCHWOOD PARK DEVELOPMENT)

CALA HOMES THAMES

11 SEPTEMBER 2025

## PHASE 2 GEOTECHNICAL AND GEO-ENVIRONMENTAL SITE INVESTIGATION

### NEIGHBOURHOOD CENTRE HOGWOOD FARM (FINCHWOOD PARK DEVELOPMENT)

FOR

CALA HOMES THAMES

ISSUE 1



41623-064

11 September 2025

Eastwood Consulting Engineers is a trading name of Eastwood and Partners (Consulting Engineers) Limited  
Registered Office: St Andrew's House, 23 Kingfield Road, Sheffield, S11 9AS, Company No: 1835021, VAT Registration No: 738 2114 44

**Directors:** S R Ellis BEng CEng MInstE MICE | S J English BEng CEng MInstE | C A Topliss BSc CEnv CSci CGeoL SiLC FICE FGS  
A R Priest BEng

**Technical Directors:** M P Chappell BEng CEng FInstE | K Edwards MSci CGeoL FGS | C Hodge EngTech MICE | A J Kerslake BEng FGS

**Associates/Principals:** A M Cross MEng CEng MICE | A Lavelle MEng CEng MICE | R A Noble BSc FGS | C L Capes BSc FGS | R Wall BSc CGeoL FGS  
W T Chidawanyika BSc CEng MIEI MICE | A J Cartlidge MEng CEng MInstE | C J Burgoyne BSc IEng MICE  
G C Burgin BSc MSc FGS | J G Morris MEng CEng MInstE MICE

**Consultants:** P Richardson BSc CEng MICE FInstE | S D Preston BEng CEng FICE FInstE | A G Marshall BEng CEng MInstE

## PHASE 2 GEOTECHNICAL AND GEO-ENVIRONMENTAL SITE INVESTIGATION

NEIGHBOURHOOD CENTRE  
HOGWOOD FARM  
(FINCHWOOD PARK DEVELOPMENT)

FOR  
CALA HOMES THAMES  
ISSUE 1

Job No. : 41623  
Report Status : FINAL  
Document Date : 11 September 2025  
Approved : 

Ruth Noble  
Associate

## CONTENTS

|            |                                            |           |
|------------|--------------------------------------------|-----------|
| <b>1.0</b> | <b>EXECUTIVE SUMMARY .....</b>             | <b>5</b>  |
| <b>2.0</b> | <b>INTRODUCTION.....</b>                   | <b>7</b>  |
| 2.1        | Terms of Reference .....                   | 7         |
| 2.2        | Context .....                              | 7         |
| 2.3        | Aims and Objectives .....                  | 7         |
| 2.4        | Scope of Investigation.....                | 7         |
| 2.5        | Limitations of Investigation.....          | 8         |
| <b>3.0</b> | <b>THE SITE.....</b>                       | <b>9</b>  |
| 3.1        | Description.....                           | 9         |
| <b>4.0</b> | <b>SUMMARY OF PHASE 1 ASSESSMENT .....</b> | <b>10</b> |
| 4.1        | Site History .....                         | 10        |
| 4.1.1      | The Site .....                             | 10        |
| 4.1.2      | The Surrounding Area.....                  | 10        |
| 4.2        | Geology .....                              | 11        |
| 4.3        | Hydrogeology.....                          | 11        |
| 4.4        | Hydrology.....                             | 11        |
| 4.5        | Ground Gas .....                           | 11        |
| 4.6        | Potential Pollutant Linkages .....         | 12        |
| <b>5.0</b> | <b>GROUND INVESTIGATION.....</b>           | <b>13</b> |
| 5.1        | Site Works .....                           | 13        |
| 5.2        | Laboratory Testing .....                   | 13        |
| <b>6.0</b> | <b>GROUND CONDITIONS.....</b>              | <b>14</b> |
| 6.1        | Surface Covering .....                     | 14        |
| 6.2        | Made Ground.....                           | 14        |
| 6.3        | Natural Ground .....                       | 14        |
| 6.4        | Obstructions.....                          | 15        |
| 6.5        | Groundwater .....                          | 15        |

|            |                                                     |           |
|------------|-----------------------------------------------------|-----------|
| 6.6        | Evidence of Contamination .....                     | 15        |
| <b>7.0</b> | <b>GEOTECHNICAL APPRAISAL .....</b>                 | <b>16</b> |
| 7.1        | General .....                                       | 16        |
| 7.2        | Laboratory Testing .....                            | 16        |
| 7.3        | In-Situ testing .....                               | 17        |
| 7.4        | Foundations .....                                   | 17        |
| 7.5        | Ground Floors .....                                 | 18        |
| 7.6        | Superstructure Precautions .....                    | 18        |
| 7.7        | Excavation Problems .....                           | 18        |
| 7.8        | Obstructions .....                                  | 19        |
| 7.9        | Roads .....                                         | 19        |
| 7.10       | Surface Water Drainage .....                        | 19        |
| <b>8.0</b> | <b>REFINEMENT OF OUTLINE CONCEPTUAL MODEL .....</b> | <b>20</b> |
| 8.1        | Source Characterisation .....                       | 20        |
| 8.2        | Ground Conditions .....                             | 20        |
| 8.3        | Gas Precautions .....                               | 20        |
| 8.4        | Unexpected Contamination .....                      | 20        |
| 8.5        | Chemical Testing .....                              | 21        |
| 8.6        | Assessment Criteria .....                           | 21        |
| 8.7        | Chemical Test Results .....                         | 21        |
| 8.7.1      | Topsoil .....                                       | 21        |
| 8.7.2      | Made Ground .....                                   | 21        |
| 8.7.3      | Natural Ground .....                                | 22        |
| 8.7.4      | Sulphates .....                                     | 22        |
| 8.8        | Significant Pollutant Linkages .....                | 23        |
| <b>9.0</b> | <b>RISK ASSESSMENT .....</b>                        | <b>24</b> |
| 9.1        | Human Health: Future Site Users .....               | 24        |
| 9.2        | Human Health: During Construction .....             | 24        |
| 9.3        | Plants .....                                        | 24        |
| 9.4        | Ground Gas .....                                    | 24        |
| 9.5        | Construction Materials .....                        | 25        |
| 9.6        | Controlled Waters .....                             | 25        |

|     |                                |    |
|-----|--------------------------------|----|
| 9.7 | Unexpected Contamination ..... | 25 |
| 9.8 | Disposal of Material.....      | 25 |
| 9.9 | Limitations.....               | 26 |

## APPENDICES

**Appendix 1** Exploratory Hole Location Plan, Drawing Reference: 41623/031 Rev A

**Appendix 2** Trial Pit Logs (TP1-NC – TP3-NC)

Cable Percussion Borehole Log (BH1-NC)

**Appendix 3** Chemical Test Results (17-19872 & 25-042363-1)

Table of Assessment Values – Public Open Space Near Housing

**Appendix 4** Geotechnical Test Results (GEO/43098)

**Appendix 5** Groundwater Monitoring Report, reference 41623/007

## 1.0 EXECUTIVE SUMMARY

1. This report presents the findings of a Geotechnical and Geo-Environmental Site Investigation carried out by Eastwood Consulting Engineers.
2. The site is part of the wider Finchwood Park Development, accessed off Nine Mile Ride Extension (road), around 1.3 km to the south of Arborfield Garrison in Berkshire.
3. The site is relatively level and predominately comprises undeveloped land locally covered by grass and scrub vegetation, with disused haul roads crossing the site in various orientations. Numerous stockpiles are present on the site, as well as areas used for storing building materials. An area in the south is utilised as a drainage bund for road sweeper spoil.
4. The solid geology at the site is shown to comprise the London Clay Formation. No superficial deposits are indicated to be present.
5. The bedrock is classified as Unproductive Strata and the site does not lie within a groundwater Source Protection Zone.
6. No radon precautions or ground gas protective measures are considered to be required.
7. The ground conditions comprise topsoil or made ground over natural deposits of the London Clay Formation. Made ground was identified in three locations to a maximum depth of 1.5 m bgl.
8. Groundwater was not encountered in any trial pits excavated; however, previous groundwater monitoring has suggested that shallow groundwater may be present, particularly during wetter months.
9. For the majority of the site, traditional strip and trench fill foundations are expected to be appropriate, founded at a minimum depth of 900 mm in the natural clay strata.
10. Foundations will require deepening where within influence of trees, in accordance with NHBC Standards Chapter 4.2. Heave precautions will be required wherever the foundation depth exceeds 1.5 m due to the influence of past or present trees, or for piled within the influence of trees.
11. It has been suggested that levels will be raised at the site, meaning that piling may be a more economical foundation solution. Analysis has shown that conventional driven piles should be sufficient.

12. It is assumed that precast concrete floors with a minimum 150 mm high ventilated void beneath will be used. The ventilated void height will need to be increased to 250 mm high where heave precautions are required.
13. Soakaways are not considered to be a viable form of surface water drainage due to the presence of cohesive strata.
14. No elevated concentrations of contaminants have been identified within the topsoil or natural ground. Therefore no risk to human health or plants have been identified and the topsoil and natural ground across the site can be considered suitable for reuse.
15. No elevated concentrations of contaminants were recorded in the made ground, however due to the physical nature of this material, it is recommended that a minimum of 450 mm of clean soil, including at least 100 mm of topsoil, is placed over made ground where it is present in soft landscaped areas.
16. DS-3 AC-3 sulphate precautions will be required for below ground concrete in contact with the made ground. DS-2 AC-2 sulphate precautions are appropriate for concrete in contact with the weathered London Clay Formation (i.e. at <3 m bgl), increased to DS-4 AC-4 precautions for concrete in contact with the unweathered London Clay Formation (i.e. at >3 m bgl).
17. The conclusions made in this report are subject to agreement by the approving bodies and your warranty provider.

## 2.0 INTRODUCTION

### 2.1 Terms of Reference

This report presents the findings of a Phase 2 Geotechnical and Geo-environmental Site Investigation carried out by Eastwood Consulting Engineers (ECE) on the instructions of, CALA Homes Thames. Any other parties using the information in this report do so at their own risk and any duty of care is excluded.

### 2.2 Context

ECE (then Eastwood & Partners) undertook a broader site investigation that encompasses the Neighbourhood Centre in 2017. Report reference CAT/RAN/SAE/41623-002, dated 21 August 2017, should therefore be read in conjunction with this report.

One trial pit (TP23) undertaken as part of that investigation has been referred to within this report as it is shown to be located within the Neighbourhood Centre site boundary.

No other intrusive investigations are known to have been undertaken on the site in the past.

### 2.3 Aims and Objectives

The aims and objectives of this additional investigation were as follows.

- Detail the ground conditions and their geotechnical properties enabling outline foundation proposals to be made for the proposed development;
- Carry out tiered risk assessment to establish the likely risks to future receptors, involving the use of generic risk assessment criteria and where unacceptable risks are identified, site specific assessment criteria within a detailed quantitative risk assessment;
- Identify feasible remediation options if unacceptable risks are highlighted; and
- Develop and appropriate remediation strategy where remediation is required.

### 2.4 Scope of Investigation

The investigation consisted of intrusive site works and laboratory analysis. The findings were used to test the conceptual model and produce a final risk assessment.

The intrusive works comprised trial pits which were completed to enable:

- Examination of the upper few metres of ground;
- In situ description of soils, enabling any localised lateral and vertical changes in soil conditions to be logged;
- Assessment of any contamination identified using visual and olfactory methods; and
- Collection of soil samples for chemical and geotechnical testing.

A cable percussion borehole was also undertaken for the purposes of determining the ground conditions at depth to assist with pile design.

## 2.5 Limitations of Investigation

This report is based on the assumption that the site will be developed with a single building of conventional design for the purposes of community use. Earthworks to raise the levels across the site are believed to be proposed. This has been taken account of in the recommendations made within this report, and therefore, should the proposals change significantly, the recommendations may not be appropriate.

Where assessments of site areas affected in particular ways are given, these are approximate. All information, comments and opinions given in this report are based on the ground conditions encountered during the site work, on the results of laboratory testing carried out as part of the investigation and information gained from a geological and historical desk study. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata and water conditions between or below investigation points. It should be noted that groundwater levels vary due to seasonal or other effects, and may at times differ from those measured during the investigation.

This report considers the ground and groundwater and does not cover any buildings or their fabric or the constituents of any existing hardstanding materials. Generally, testing has only been carried out for contaminants identified as potentially present with no assessment made of biological contamination. Risks to ecological receptors, such as bats, have not been considered.

## 3.0 THE SITE

### 3.1 Description

The Neighbourhood Centre is located to the northwest of Phase 3 of the wider Finchwood Park Development. It is located approximately 1.3 km southeast of Arborfield Garrison in Berkshire at grid reference 477135, 164458. Access to the site at the time of the investigation was off a partially constructed carriageway to the south, with access to the remainder of the site via haul roads.

The site has an area of approximately 0.7 hectares, is irregular in plan and relatively level. The site predominately comprises undeveloped land covered by grass and scrub vegetation, with disused haul roads running southeast to northwest and northeast to southwest. Numerous stockpiles of demolition and site-won material were also present within the site boundary, predominately covering areas in the south and northeast of the site. Areas in the east and north of the site were used for building material and drainage infrastructure storage. An area in the south of the site was also used as a disposal bund for road sweeper spoil.

The site is bordered to the east, south and west by further Finchwood Park Development. The site is bordered to the north by the Nine Mile Ride Extension (road) with further land parcels of the Finchwood Park Development beyond this.

The information presented in this report relates solely to the unoccupied 0.7 hectare former agricultural area which is known as Neighbourhood Centre (herein referred to as 'The Site'), except where specifically stated otherwise.

## 4.0 SUMMARY OF PHASE 1 ASSESSMENT

A Phase 1 assessment of the broader site (of which the subject site is a part of) was undertaken as part of our initial wider site investigation in 2017, reference CAT/RAN/SAE/41623-002, and should be read in conjunction with this Phase 2 report. The pertinent points specifically relevant to Neighbourhood Centre are summarised in the sections below.

### 4.1 Site History

Historical Ordnance Survey maps obtained as part of the Envirocheck Report have been studied to assess the previous use of the site.

#### 4.1.1 The Site

The historical mapping shows that the site has remained predominately undeveloped throughout the course of the mapping period.

The earliest historical maps show a number of structures, later referred to as 'Hogwood Farm' directly adjacent to the northeast of the current subject site and within the site boundary in the northeast.

By 1988, a 'pond' is shown directly adjacent to the north of the current subject site and partially within the site boundary in the north, also with an embankment on the southwestern side of the pond.

Google Earth satellite imagery, indicates that circa February 2022, the pond has been removed and that circa May 2025 the structures referred to as 'Hogwood Farm' have also been removed.

#### 4.1.2 The Surrounding Area

The earliest historical maps show the surrounding area predominantly comprises agricultural land. A clay pit and brickworks are shown immediately to the north east of Hogwood Farm and approximately 560 m east of the current subject site. Old sand and gravel pits are labelled beyond the extent of Hogwood Farm to the south west (greater than 1 km away from the current subject site). By the early 20th Century, a brickworks is also present around 250 m south of Hogwood Farm, and gravel pits are shown approximately 150 m south (greater than 1 km away from the current subject site) and 750 m west of Hogwood Farm.

A number of agricultural buildings are shown immediately to the north of the subject site which later become Hogwood Farm Industrial Estate.

By 1932 Arborfield Remount Depot is labelled around 750 m north of the site, although its full extent and proximity to the site is unclear. By 1938 additional brickworks are shown around 100 m to the north west of the site, later developed as Hogwood Industrial Estate, and 750 m north west of the site.

The 1961 historical map shows Arborfield Remount Depot has been renamed Arborfield Garrison, and extended up to the northern boundary of Hogwood Farm. The 1975 to 1976 map indicates the addition of a residential dwelling and pond less than 250 m north west of the site, no longer indicated to be present by 1993.

The 1984 map shows Hogwood Farm Industrial Estate adjacent to the north of the site. The 1984 to 1987 map shows the addition of Hogwood Industrial Estate a short distance to the north east of the subject site. By 1988 the attenuation pond is shown between the two industrial estates. Satellite imagery indicates that the pond is infilled between 2012 and 2022 and Hogwood Farm Industrial Estate is then demolished some time between 2022 and 2025.

## 4.2 Geology

The site is shown to be underlain by the London Clay Formation (clay, silt and sand). There are no superficial deposits mapped across the site area. No faults are shown to cross the site.

## 4.3 Hydrogeology

The Envirocheck identifies that the underlying solid bedrock below the site is primarily classified as Unproductive Strata.

The site is not recorded as being within a groundwater Source Protection Zone.

## 4.4 Hydrology

According to the Envirocheck the nearest surface water feature is approximately 340 m to the northwest.

## 4.5 Ground Gas

The updated UK Radon maps, issued in December 2022, have been consulted. These confirm that the site is located in a 1km grid square where less than 1% of homes are estimated to lie at or above the action level. Therefore, no radon precautions are required at the site.

No landfill sites are identified within 250 m of the site within the Envirocheck.

The Envirocheck indicates the presence of one area of potentially infilled land 100 m to the north of the site beneath Hogwood Industrial Estate, however this is not considered to present a significant source of gas generation and migration.

Another pond is shown directly adjacent to and partially within the site boundary in the north of the site. On the satellite imagery dated from February 2022, this pond is shown as no longer been present and is presumed to have been backfilled at some point between 2021 and 2022. This would have been undertaken in an engineered manner, as part of the construction of the Nine Mile Ride Extension road which passes directly over the former pond. As such, the infill material is not considered to pose a risk of ground gas generation.

A number of ponds are shown on historical maps of the wider Hogwood Farm site and are presumed to have been backfilled. The ponds were small features and are expected to have been shallow, and therefore are not considered to pose a significant risk of gas generation and migration.

A significant depth of made ground (>2 m) is not anticipated beneath the site. Ground gas protective measures are therefore not considered to be necessary at this stage.

## 4.6 Potential Pollutant Linkages

The table below details the possible sources and associated contaminants of concern, pathways and receptors which were identified by the phase 1 report.

| Source                   | Potential Contaminants                                                                                                                    | Potential Pathways                                                                      | Potential Receptors                                                                                                                     |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Made ground (if present) | <ul style="list-style-type: none"> <li>Heavy metals/metalloids and polycyclic aromatic hydrocarbons (PAHs)</li> <li>Asbestos</li> </ul>   | <ul style="list-style-type: none"> <li>Ingestion, inhalation, direct contact</li> </ul> | <ul style="list-style-type: none"> <li>Future site occupants and visitors</li> <li>Site construction workers</li> <li>Plants</li> </ul> |
|                          |                                                                                                                                           | <ul style="list-style-type: none"> <li>Direct contact</li> </ul>                        | <ul style="list-style-type: none"> <li>Water supply pipes</li> </ul>                                                                    |
|                          |                                                                                                                                           | <ul style="list-style-type: none"> <li>Migration through ground</li> </ul>              | <ul style="list-style-type: none"> <li>Controlled waters</li> </ul>                                                                     |
|                          | <ul style="list-style-type: none"> <li>Sulphates</li> </ul>                                                                               | <ul style="list-style-type: none"> <li>Direct contact</li> </ul>                        | <ul style="list-style-type: none"> <li>Sub-surface concrete structures</li> </ul>                                                       |
| Topsoil                  | <ul style="list-style-type: none"> <li>Heavy metals/metalloids and polycyclic aromatic hydrocarbons (PAHs)</li> <li>Pesticides</li> </ul> | <ul style="list-style-type: none"> <li>Ingestion, inhalation, direct contact</li> </ul> | <ul style="list-style-type: none"> <li>Future site occupants and visitors</li> <li>Site construction workers</li> <li>Plants</li> </ul> |
| Natural ground           | <ul style="list-style-type: none"> <li>Sulphates</li> </ul>                                                                               | <ul style="list-style-type: none"> <li>Direct contact</li> </ul>                        | <ul style="list-style-type: none"> <li>Sub-surface concrete structures</li> </ul>                                                       |

## 5.0 GROUND INVESTIGATION

### 5.1 Site Works

Eastwood Consulting Engineers visited site between 25 and 26 July 2017 and excavated one trial pit (TP23) as part of the broader site investigation.

A further site visit was then undertaken on 6 August 2025 in order to further determine the underlying ground conditions and the following intrusive ground investigation was completed:

- Three trial pits (TP1-NC to TP3-NC) to between 2.9 and 3.1 m below ground level (bgl); and
- One cable percussion borehole (BH1-NC) to 25 m bgl.

### 5.2 Laboratory Testing

One sample of topsoil was despatched for testing following the wider 2017 site work. This was analysed at Chemtest using MCERTS accredited methodologies where available.

During the 2025 investigation a further one sample of topsoil, two samples of made ground and three samples of natural ground were despatched for chemical testing. Soil samples were taken in 500 g plastic tubs, 180 g plastic tubs and 60 g vials and analysed at i2 Analytical using MCERTS accredited methodologies where available.

Laboratory chemical testing results are presented in Appendix 3 and discussed further in Section 8.0.

In 2017 one sample of natural ground was sent for geotechnical testing at Geolabs. Following on from the August 2025 investigation, two further samples of natural ground were sent for geotechnical testing. The geotechnical test results are presented in Appendix 4 and discussed further in Section 7.0.

## 6.0 GROUND CONDITIONS

### 6.1 Surface Covering

The accessible portions of site, i.e. areas not occupied by stockpiles or materials storage, were covered predominately by compacted hardcore with the remainder of the site covered by grass and scrub vegetation. Underlying any grass or scrub vegetation, topsoil comprised of slightly gravelly sandy silt with frequent rootlets and rare brick and glass and was present to a depth of 0.2 m bgl.

This is consistent with the exploratory hole undertaken in 2017, with the exception of the anthropogenic component to the topsoil. However, the recent construction and demolition in close proximity to the site would explain the presence of these components.

### 6.2 Made Ground

Made ground of recently placed hardcore was encountered in three locations (TP1-NC, TP2-NC and BH1-NC) across the site. This was found to comprise very sandy silty gravel or gravelly silty sand with gravel and cobbles of brick, concrete, ceramic, glass, metal, slate, breezeblock and plastic. This was found to extend to depths of between 0.4 and 0.7 m bgl. Within TP2-NC, an area of the trial pit was found to comprise reworked chalk of slightly sandy gravelly silt. This material is considered to represent placed fill for the haul roads on the site or as part of the historic farm compound.

### 6.3 Natural Ground

Natural ground of the weathered London Clay Formation was encountered beneath the topsoil or made ground. This comprised firm to very stiff, orangish brown, greyish brown, grey and light grey sometimes slightly gravelly slightly sandy to very sandy clay with occasional sand partings or silt pockets and rootlets. Locally this stratum was found to comprise very sandy clayey silt. Where gravel was found to be present, this comprised angular to sub angular fine to medium chert.

Within TP1-NC, underlying made ground an additional stratum was encountered comprising firm to stiff, dark greenish grey and brownish orange mottled, slightly sandy slightly gravelly micaceous silty clay with a mild organic odour. This stratum was found to be present between 0.7 and 0.9 m bgl.

Unweathered London Clay of firm to stiff dark grey sandy silty clay, was identified from a depth of 4.5 m bgl within BH1-NC. The base of the London Clay strata was not proven and the borehole was terminated at 25 m bgl.

This is consistent with the findings of the 2017 investigation.

## 6.4 Obstructions

No subsurface obstructions were encountered during the site investigation.

## 6.5 Groundwater

Groundwater was not recorded within any of the trial pits and these remained dry whilst open.

Eastwood Consulting Engineers undertook a programme of groundwater monitoring across the wider Hogwood Farm site between July 2018 and June 2019. The results of this were reported on in our Groundwater Monitoring Report, reference 41623/007, dated 21 August 2019. A copy of this report is enclosed in Appendix 5. The two closest monitoring wells to the Neighbourhood Centre are WS5 and WS13. The groundwater levels recorded shallowest groundwater levels in these wells of 0.78 m and 0.74 bgl respectively. Therefore, shallow groundwater may impact the excavation of trenches, particularly during the wetter months.

## 6.6 Evidence of Contamination

Visual or olfactory evidence of possible contamination was not identified in any of the exploratory holes.

## 7.0 GEOTECHNICAL APPRAISAL

### 7.1 General

Our investigations indicate that the ground conditions beneath site are relatively homogenous. They comprise topsoil or made ground over natural deposits of the London Clay Formation. Groundwater was not encountered in any trial pits or the cable percussion borehole; however previous groundwater monitoring has indicated the presence of shallow groundwater.

### 7.2 Laboratory Testing

Two samples of natural cohesive ground of the London Clay Formation were sent for geotechnical laboratory testing following the field work in August 2025. A full copy of the results (report ref GEO/43098) is included in Appendix 4 and these are summarised in the table below.

| Exploratory Hole | Depth (m) | Moisture Content | Liquid Limit | 0.4 x Liquid Limit | Potentially Desiccated? | Modified Plasticity Index (%) | Volume Change Potential |
|------------------|-----------|------------------|--------------|--------------------|-------------------------|-------------------------------|-------------------------|
| BH1-NC           | 7.5       | 20.2             | 42           | 16.8               | N                       | 20                            | Medium                  |
| BH1-NC           | 14.0      | 22.0             | 55           | 22.0               | N                       | 32                            | Medium                  |

The above results demonstrate that the natural cohesive soils have a medium volume change potential. As such, it is considered that a medium volume change potential should be adopted for the natural cohesive soils.

Neither of the samples are indicated to be potentially significantly desiccated as, in both samples, the water content is equal or greater than 40% of the liquid limit.

Following the drilling work in August 2025, two undisturbed U100 samples were recovered from the cable percussion borehole and these were scheduled for undrained triaxial testing. The results are also included in test report GEO/43098 in Appendix 4, and are summarised in the table below.

| Location | Depth (m bgl) | Cell Pressure (kPa) | Deviator Stress (kPa) | Shear Stress (kPa) |
|----------|---------------|---------------------|-----------------------|--------------------|
| BH1-NC   | 7.5           | 150                 | 459                   | 230                |
| BH1-NC   | 14.0          | 280                 | 455                   | 227                |

The above results demonstrate the unweathered London Clay Formation to be very stiff. This is expected based on the in-situ testing undertaken during the trial pitting and drilling works, as discussed below.

### 7.3 In-Situ testing

In-situ hand shear vane testing undertaken on site in the cohesive weathered London Clay Formation during August 2025 recorded shear strength values of between 66 and 196 kN/m<sup>2</sup>, with an average reading of 107 kN/m<sup>2</sup>. It should be noted that the high sand proportion in the majority of the strata made representative readings potentially inaccurate. Furthermore, hand shear vane readings were not possible at a number of depths due to the sand content of the natural cohesive strata.

Standard penetration tests (SPTs) were completed at 1 m intervals to a depth of 6 m bgl, then at 1.5 m intervals thereafter. The results are summarised in the table below.

| Strata                          | Average SPT N Value |
|---------------------------------|---------------------|
| Weathered London Clay Formation | 17.5                |
| London Clay <10 m bgl           | 20.3                |
| London Clay >10 m bgl           | 37.4                |

The above table shows that the average N-value varied between 17.5 in the weathered London Clay and 37.4 in the unweathered London Clay and increased steadily with depth.

The full hand shear vane and SPT results can be seen in the trial pit and borehole logs included in Appendix 2.

### 7.4 Foundations

For the proposed development, it is expected that traditional strip and trench fill foundations, taken onto natural non-desiccated cohesive strata of the weathered London Clay Formation, is expected to be appropriate. The geotechnical testing has shown that the soils should be assigned a medium volume change potential and therefore a minimum founding depth of 900 mm below existing or finished ground level (whichever is deeper) will apply. At this depth an allowable bearing capacity of 125 kN/m<sup>2</sup> is likely to be achievable. Although, should soft spots be encountered, local deepening of the foundation until firmer strata is encountered, may be required.

Foundations within clay soils will need to be deepened in accordance with NHBC Standards, Chapter 4.2 where past, present or proposed trees are within influencing distance of the foundation.

Heave precautions should be included where the footing depth due to past or present trees is in excess of 1500 mm or for footings within tree influence.

Consideration should be given to tree influence at an early stage. Any proposed development is likely to need to be piled wherever the depth due to trees exceeds 2.5 m. Piling may also be required where site levels are proposed to be raised, particularly where this also intersects with footings requiring deepening due to trees. We understand the levels are proposed to be raised and as such piling is likely to be the most economical foundation option. Given the site is generally soft-surfaced, and as no significant obstructions were encountered, it is expected that driven piles will be appropriate. Specific pile design will need to be undertaken by the piling contractor using the information provided in this report.

Due to the possibility of shallow groundwater, particularly during wetter months, excavations should not be left open for prolonged periods. Methods such as dig and pour or sump and pump may be required to mitigate against shallow groundwater.

## 7.5 Ground Floors

Where less than 600 mm of made ground is present, ground bearing slabs will be appropriate. Elsewhere, reinforced suspended slabs or precast concrete floors with a minimum 150 mm high ventilated void should be used.

If the footings require heave precautions due to trees, a precast concrete floor with a ventilated void will be required. This void should be a minimum of 250 mm high.

## 7.6 Superstructure Precautions

No additional superstructure precautions will be required due to the ground conditions encountered.

## 7.7 Excavation Problems

The trial pits remained dry and stable whilst open. Nonetheless, support will therefore be required in accordance with current Health & Safety Regulations wherever access is required to trenches deeper than 1.2 m or less where there is risk of collapse.

## 7.8 Obstructions

Numerous areas of the site were unable to be accessed during the investigation as a result of several stockpiles of site-won material soil in the south and northeast of the site.

No below ground obstructions were encountered over the course of the site works.

## 7.9 Roads

Based upon the ground conditions observed a CBR value of around 2% is likely to be applicable. The ground should be assumed to be frost susceptible and a minimum construction thickness of 450 mm will therefore apply. It is recommended that CBR tests are undertaken along any proposed roads prior to construction so that accurate CBR values can be obtained.

However, where levels are being raised, the natural strata encountered during the course of the intrusive investigation will not be acting as the formation for road construction and therefore the CBR value will need to be determined through testing undertaken on the engineered soils. This is likely to be in excess of the 2% mentioned above, assuming an appropriate earthworks specification is followed when the soil is placed.

## 7.10 Surface Water Drainage

Given the cohesive nature of the natural strata encountered, surface water drainage via ground soakage is unlikely to be viable for the proposed development.

## 8.0 REFINEMENT OF OUTLINE CONCEPTUAL MODEL

### 8.1 Source Characterisation

An outline conceptual model, detailing the possible sources and associated contaminants of concern, potential pathways and receptors identified in the Phase 1 study was detailed in Section 4.6.

This section of the report documents the works undertaken to obtain information to test and refine this model enabling a risk assessment to be produced and, where significant risks are expected, remediation recommendations.

### 8.2 Ground Conditions

Our investigations indicate that the site is surfaced with topsoil or made ground of recently placed hardcore over weathered deposits of the London Clay Formation.

### 8.3 Gas Precautions

No radon precautions are required at the site and no landfill sites were identified within 250 m.

Made ground was encountered in three locations and generally comprised hardcore for site haul roads. It did not contain a significant proportion of organic or degradable material and was not present to significant depths (i.e. >2m).

A former pond located directly adjacent to the northwestern boundary, possibly encroaching into the site, was infilled between 2021 and 2022 as part of the Nine Mile Ride Extension construction. As such, the infill is assumed to have been placed to an agreed earthworks specification in an engineered manner and will not pose a significant risk of ground gas generation.

A number of former ponds were also indicated on historical maps of the wider Hogwood Farm site and in the surrounding area. These were small features and are expected to have been shallow, and as such were not considered to pose a significant risk of gas generation and migration

Based on the above, ground gas precautions are not considered to be necessary in the construction of any proposed development.

### 8.4 Unexpected Contamination

No visual or olfactory evidence of significant contamination was observed during the investigation.

## 8.5 Chemical Testing

Following the 2017 investigation one sample of topsoil was sent for chemical testing. A further one sample of topsoil, two samples of made ground and three samples of natural ground were sent for testing following the August 2025 investigation. Each of the samples was analysed for the suite of contaminants listed below.

| Contaminant Type  | Actual Contaminants                                                          |
|-------------------|------------------------------------------------------------------------------|
| Metals/Metalloids | Arsenic, cadmium, chromium, lead, mercury, nickel, selenium, copper and zinc |
| pH                | pH                                                                           |
| PAHs              | Speciated PAH                                                                |
| Sulphates         | Water soluble sulphate, acid soluble sulphate, total sulphur                 |

In addition to the above testing:

- The two samples of made ground and one sample of topsoil were screened for asbestos fibres; and
- One sample of made ground was tested for fully fractionated petroleum hydrocarbons, BTEX & MTBE.

Testing was undertaken by i2 Analytical, using MCERTs accredited methodologies, where available.

## 8.6 Assessment Criteria

The proposed development of the site is a community building with associated parking. It is assumed that limited soft landscaping areas will be incorporated. Therefore, the assessment criteria relating to public open space near housing have been used.

Tables detailing the relevant assessment concentrations used are included in Appendix 3.

## 8.7 Chemical Test Results

Copies of the chemical test results (17-19872 & 25-042363) are included in Appendix 3. Some preliminary risk assessment is undertaken in this section of the report where determinants can be readily discounted.

### 8.7.1 Topsoil

None of the samples of topsoil recorded any elevated concentrations of determinants when compared to public open space near housing assessment values.

### 8.7.2 Made Ground

None of the samples of made ground recorded any elevated concentrations of determinants when compared to the public open space near housing assessment values.

One sample of made ground was tested for fully fractionated total petroleum hydrocarbons for which the recorded results were all below the laboratory detection limit.

Three samples of made ground were screened for asbestos. The sample of made ground from TP2 at 0.6 m bgl recorded the presence of chrysotile in the form of loose fibres. Subsequent quantification of this was recorded as <0.001 %

### 8.7.3 Natural Ground

None of the samples of natural ground recorded any elevated concentrations of determinants when compared to the public open space near housing assessment values.

### 8.7.4 Sulphates

In accordance with BRE Special Digest 1, the site comes under the classification of 'brownfield' and groundwater is expected to be mobile.

The following table displays the results of the made ground and natural ground samples tested:

| Made Ground                   | Range of Results | Characteristic Value | Sulphate Classification |
|-------------------------------|------------------|----------------------|-------------------------|
| Water Soluble Sulphate (mg/l) | 106 to 862       | 862                  | DS-3 AC-3               |
| Total Sulphur (%)             | 0.025 to 0.238   | 0.238                |                         |
| Total Potential Sulphate (%)  | 0.075 to 0.714   | 0.714                |                         |
| pH                            | 7.6 to 9.5       | 7.6                  |                         |
| <b>Weathered London Clay</b>  |                  |                      |                         |
| Water Soluble Sulphate (mg/l) | 10.2 to 338      | 338                  | DS-2 AC-2               |
| Total Sulphur (%)             | 0.011 to 0.096   | 0.096                |                         |
| Total Potential Sulphate (%)  | 0.033 to 0.288   | 0.288                |                         |
| pH                            | 8 to 8.2         | 8.0                  |                         |

The total potential sulphate values in the made ground dictate a design class of DS-3 and an ACEC class of AC-3. Therefore, where the concrete is in contact with made ground, appropriate sulphate precautions will need to be incorporated.

For the weathered London Clay, at less than 3 m bgl, based on the characteristic value of total potential sulphate, a design sulphate class of DS-2 is assigned. The pH values suggest an ACEC class of AC-2 when using the design sulphate values.

At depths below 3 m bgl, where the London Clay becomes unweathered, the sulphate precautions should be increased to DS-4 AC-4. This is based on results of samples of the unweathered London Clay tested on adjacent land parcels, where consistently high total potential sulphate results have been recorded.

## 8.8 Significant Pollutant Linkages

The significant pollutant linkages consequently identified are thus documented in the following table.

| Source                                          | Pathway        | Receptor              |
|-------------------------------------------------|----------------|-----------------------|
| Asbestos in the made ground                     | Inhalation     | Future residents      |
| Sulphates in the made ground and natural ground | Direct contact | Below ground concrete |

## 9.0 RISK ASSESSMENT

### 9.1 Human Health: Future Site Users

None of the samples of topsoil or natural ground recorded any elevated concentrations of any determinants when compared to the 'public open space near housing' assessment values. Therefore, the topsoil and natural ground can be considered suitable for re-use on site.

The made ground also did not record any elevated concentrations of determinants. Free fibres of chrysotile asbestos were identified in one of the samples of made ground, however the quantification of this revealed it to be present at <0.001%. As such, it is not considered to pose a significant risk to future users of the site.

Whilst no elevated concentrations of contaminants are present, the physical properties of the made ground are not suitable to remain at the surface within gardens or landscaped areas. It is therefore recommended that a 450 mm thick capping layer of clean soil, including at least 100 mm of topsoil, is placed over the made ground to act as a growing medium wherever this is present in soft landscaped areas. Alternatively, the made ground could be removed and either placed below areas of hardstanding, or disposed of off-site, at an appropriate waste management facility.

### 9.2 Human Health: During Construction

Groundworkers employed during the construction phase of the development are most at risk of harm due to them having direct contact with the affected soils. However, the contact is generally of short duration, and all competent ground workers will be aware of the potential risks associated with the made ground soils. Therefore, the overall risk to the health of construction workers is considered to be low.

Normal site procedures, such as the wearing of gloves when handling soils and the washing of hands prior to eating, should be implemented at all times.

### 9.3 Plants

No samples recorded any phytotoxic concentrations of contaminants.

### 9.4 Ground Gas

Ground gas precautions are not considered to be necessary.

## 9.5 Construction Materials

Based upon on the results of the pH and sulphate testing discussed in Section 8, DS-3 AC-3 sulphate precautions will be required for below ground concrete in contact with the made ground. Where concrete is in contact with the shallow (<3 m bgl) natural ground only, DS-2 AC-2 sulphate precautions will be appropriate. However, this would need to be increased to DS-4 AC-4 precautions where below ground concrete is in contact with the unweathered London Clay Formation (i.e. the natural strata at depths of greater than 3 m bgl).

The results of the chemical testing will need to be forwarded to the water company so that appropriate water supply pipes can be selected.

## 9.6 Controlled Waters

The underlying bedrock is primarily classified as unproductive strata. Groundwater has not been encountered as part of this investigation and no significantly elevated concentrations of contaminants have been detected.

Therefore, no significant risk to controlled waters has been identified during the course of this investigation

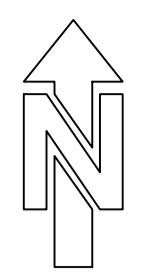
Standard good site practice during the construction phase of the development must still be adhered to in terms of surface water run-off control measures, to ensure there is no risk to controlled waters.

## 9.7 Unexpected Contamination

Should any unusual, brightly coloured, ashy, fibrous or odorous material or material suspected of containing asbestos be encountered during construction this should be brought to the attention of the site staff and investigated.

## 9.8 Disposal of Material

If material needs to be removed, it should be taken to a suitably licensed landfill or waste treatment facility. The costs of disposal and landfill tax can be substantial. The disposal of material should therefore be seen as a last resort with options such as treatment and reuse either on-site or off-site considered where possible.

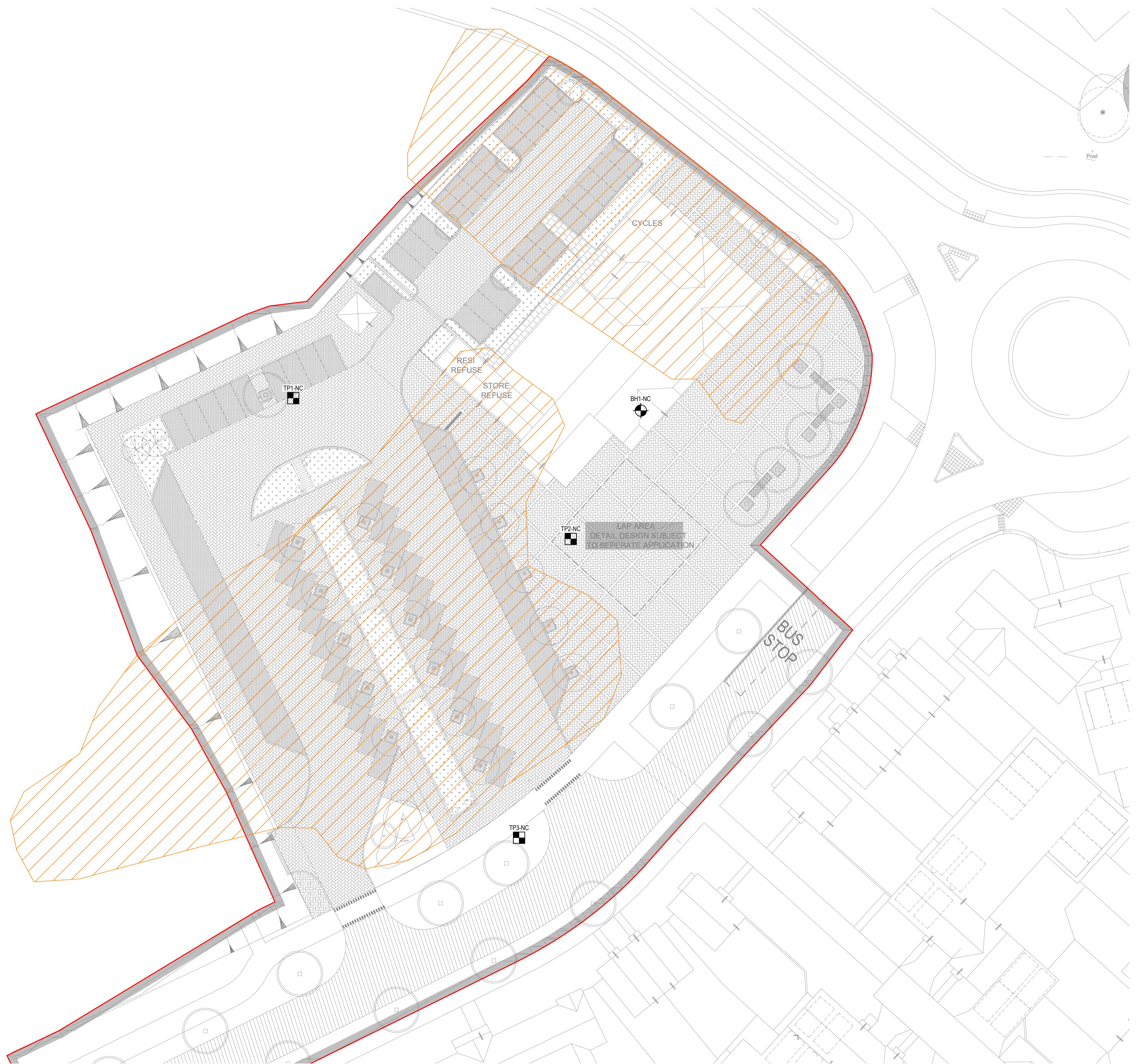

The category of landfill which can accept the waste (inert, non-hazardous or hazardous) would need to be determined and will also have a significant effect on the costs. Additional testing may be required by the landfill operator and the acceptance of material is generally at their discretion.

## 9.9 Limitations

The risk assessment presented above relates solely to the 0.7 hectare area which constitutes the Neighbourhood Centre.

## Appendix 1

Exploratory Hole Location Plan, drawing reference 41623/031 rev A




INFORMATION WITHIN THIS DRAWING IS NOT NECESSARILY PRODUCED TO SCALE.  
ALWAYS USE FIGURED DIMENSIONS AND CO-ORDINATES - IF IN DOUBT, ASK.

NOTES

KEY

- Site boundary.
- Approximate location of trial pit completed by Eastwood Consulting Engineers on 06.08.2025.
- Approximate location of cable percussion borehole completed by Eastwood Consulting Engineers on 06.08.2025 & 07.08.2025.
- Approximate extent of material stockpile on site.



|     |              |     |     |      |
|-----|--------------|-----|-----|------|
| A   | First Issue. |     |     |      |
| REV | DESCRIPTION  | SIG | CHK | DATE |

CALA HOMES THAMES

NEIGHBOURHOOD CENTRE,  
FINCHWOOD PARK, HOGWOOD FARM,  
FINCHAMPSTEAD

EXPLORATORY HOLE LOCATION PLAN

| Eastwood & Partners      |         |          | CONSULTING                   | ENGINEERS |
|--------------------------|---------|----------|------------------------------|-----------|
| St. Andrew's House       |         |          |                              |           |
| 23 Kingfield Road        |         |          |                              |           |
| Sheffield                |         |          |                              |           |
| S11 9AS                  |         |          |                              |           |
| Tel 0114 255 4554        |         |          | mail@eastwoodandpartners.com |           |
| Fax 0114 255 4330        |         |          | www.eastwoodandpartners.com  |           |
| SCALE WHEN PLOTTED AT A1 |         |          | DRAWING STATUS               |           |
| 1:250                    |         |          | INFORMATION                  |           |
| DRAWN                    | CHECKED | DATE     | DRAWING NUMBER               | REV       |
| DW                       | AML     | 15.09.25 | 41623/031                    | A         |

## Appendix 2

Trial Pit Logs (TP1-NC – TP3-NC)

Cable Percussion Borehole Log (BH1-NC)













## Appendix 3

Chemical Test Results (17-19872 & 25-049363)

Table of Assessment Values – Public Open Space Near Housing



# Final Report

---

**Report No.:** 17-19872-1**Initial Date of Issue:** 07-Aug-2017**Client** Eastwood & Partners**Client Address:**  
St. Andrews House  
23 Kingfield Road  
Sheffield  
South Yorkshire  
S11 9AS**Contact(s):**  
Geo  
Stefani Ellis**Project** 41623 Hogwood Farm, Arborfield**Quotation No.:** **Date Received:** 31-Jul-2017**Order No.:** 41623/RN/SAE **Date Instructed:** 31-Jul-2017**No. of Samples:** 25**Turnaround (Wkdays):** 5 **Results Due:** 04-Aug-2017**Date Approved:** 07-Aug-2017**Approved By:****Details:** Robert Monk, Technical Development  
Chemist

## Results - Soil

| Client: Eastwood & Partners         | Chemtest Job No.:    |      |       | 17-19872    | 17-19872    | 17-19872             | 17-19872             | 17-19872             | 17-19872    | 17-19872             | 17-19872    | 17-19872             |
|-------------------------------------|----------------------|------|-------|-------------|-------------|----------------------|----------------------|----------------------|-------------|----------------------|-------------|----------------------|
| Quotation No.:                      | Chemtest Sample ID.: |      |       | 490582      | 490583      | 490584               | 490585               | 490586               | 490588      | 490589               | 490590      | 490591               |
|                                     | Client Sample ID.:   |      |       | TP2         | TP3         | TP6                  | TP7                  | TP11                 | TP14        | TP17                 | TP18        | TP20                 |
|                                     | Sample Type:         |      |       | SOIL        | SOIL        | SOIL                 | SOIL                 | SOIL                 | SOIL        | SOIL                 | SOIL        | SOIL                 |
|                                     | Top Depth (m):       |      |       | 1.70        | 0.10        | 0.10                 | 0.10                 | 0.10                 | 0.10        | 0.10                 | 0.80        | 0.20                 |
|                                     | Date Sampled:        |      |       | 25-Jul-2017 | 25-Jul-2017 | 25-Jul-2017          | 27-Jul-2017          | 25-Jul-2017          | 26-Jul-2017 | 26-Jul-2017          | 26-Jul-2017 | 26-Jul-2017          |
|                                     | Asbestos Lab.:       |      |       | COVENTRY    | COVENTRY    | COVENTRY             |                      |                      | COVENTRY    | COVENTRY             | COVENTRY    | COVENTRY             |
| Determinand                         | Accred.              | SOP  | Units | LOD         |             |                      |                      |                      |             |                      |             |                      |
| ACM Type                            | U                    | 2192 |       | N/A         |             |                      |                      |                      |             |                      |             |                      |
| Asbestos Identification             | U                    | 2192 | %     | 0.001       |             | No Asbestos Detected | No Asbestos Detected | No Asbestos Detected |             | No Asbestos Detected |             | No Asbestos Detected |
| Moisture                            | N                    | 2030 | %     | 0.020       | 16          | 14                   | 14                   | 14                   | 15          | 13                   | 15          | 15                   |
| Soil Colour                         | N                    | 2040 |       | N/A         | Brown       | Brown                | Brown                | Brown                | Brown       | Brown                | Brown       | Brown                |
| Other Material                      | N                    | 2040 |       | N/A         | NONE        | NONE                 | Roots                | Roots                | NONE        | Roots                | Stones      | NONE                 |
| Soil Texture                        | N                    | 2040 |       | N/A         | Clay        | Sand                 | Sand                 | Sand                 | Sand        | Sand                 | Sand        | Sand                 |
| pH                                  | M                    | 2010 |       | N/A         | 7.5         | 7.1                  | 5.8                  | 5.9                  |             | 4.3                  | 6.3         | 7.2                  |
| Sulphate (2:1 Water Soluble) as SO4 | M                    | 2120 | g/l   | 0.010       | < 0.010     |                      |                      |                      |             |                      | < 0.010     |                      |
| Total Sulphur                       | M                    | 2175 | %     | 0.010       | < 0.010     |                      |                      |                      |             |                      | < 0.010     |                      |
| Sulphate (Acid Soluble)             | M                    | 2430 | %     | 0.010       | < 0.010     |                      |                      |                      |             |                      | < 0.010     |                      |
| Arsenic                             | M                    | 2450 | mg/kg | 1.0         | 15          | 10                   | 8.2                  | 8.3                  |             | 5.4                  | 7.2         | 13                   |
| Cadmium                             | M                    | 2450 | mg/kg | 0.10        | < 0.10      | 0.11                 | < 0.10               | < 0.10               |             | < 0.10               | 0.11        | < 0.10               |
| Chromium                            | M                    | 2450 | mg/kg | 1.0         | 29          | 19                   | 18                   | 21                   |             | 18                   | 20          | 42                   |
| Copper                              | M                    | 2450 | mg/kg | 0.50        | 15          | 8.1                  | 8.6                  | 9.7                  |             | 7.4                  | 9.2         | 15                   |
| Mercury                             | M                    | 2450 | mg/kg | 0.10        | < 0.10      | < 0.10               | < 0.10               | < 0.10               |             | < 0.10               | < 0.10      | < 0.10               |
| Nickel                              | M                    | 2450 | mg/kg | 0.50        | 39          | 10                   | 8.1                  | 9.1                  |             | 7.9                  | 9.0         | 22                   |
| Lead                                | M                    | 2450 | mg/kg | 0.50        | 13          | 17                   | 17                   | 19                   |             | 20                   | 21          | 13                   |
| Selenium                            | M                    | 2450 | mg/kg | 0.20        | < 0.20      | < 0.20               | < 0.20               | < 0.20               |             | < 0.20               | < 0.20      | < 0.20               |
| Zinc                                | M                    | 2450 | mg/kg | 0.50        | 46          | 28                   | 28                   | 33                   |             | 28                   | 33          | 46                   |
| Chromium (Hexavalent)               | N                    | 2490 | mg/kg | 0.50        | < 0.50      | < 0.50               | < 0.50               | < 0.50               |             | < 0.50               | < 0.50      | < 0.50               |
| Naphthalene                         | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10               | < 0.10               | < 0.10               |             | < 0.10               | < 0.10      | < 0.10               |
| Acenaphthylene                      | N                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10               | < 0.10               | < 0.10               |             | < 0.10               | < 0.10      | < 0.10               |
| Acenaphthene                        | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10               | < 0.10               | < 0.10               |             | < 0.10               | < 0.10      | < 0.10               |
| Fluorene                            | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10               | < 0.10               | < 0.10               |             | < 0.10               | < 0.10      | < 0.10               |
| Phenanthrene                        | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10               | < 0.10               | < 0.10               |             | < 0.10               | < 0.10      | < 0.10               |
| Anthracene                          | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10               | < 0.10               | < 0.10               |             | < 0.10               | < 0.10      | < 0.10               |
| Fluoranthene                        | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10               | < 0.10               | < 0.10               |             | < 0.10               | < 0.10      | < 0.10               |
| Pyrene                              | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10               | < 0.10               | < 0.10               |             | < 0.10               | < 0.10      | < 0.10               |
| Benzo[a]anthracene                  | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10               | < 0.10               | < 0.10               |             | < 0.10               | < 0.10      | < 0.10               |
| Chrysene                            | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10               | < 0.10               | < 0.10               |             | < 0.10               | < 0.10      | < 0.10               |
| Benzo[b]fluoranthene                | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10               | < 0.10               | < 0.10               |             | < 0.10               | < 0.10      | < 0.10               |
| Benzo[k]fluoranthene                | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10               | < 0.10               | < 0.10               |             | < 0.10               | < 0.10      | < 0.10               |
| Benzo[a]pyrene                      | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10               | < 0.10               | < 0.10               |             | < 0.10               | < 0.10      | < 0.10               |
| Indeno(1,2,3-c,d)Pyrene             | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10               | < 0.10               | < 0.10               |             | < 0.10               | < 0.10      | < 0.10               |
| Dibenz(a,h)Anthracene               | N                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10               | < 0.10               | < 0.10               |             | < 0.10               | < 0.10      | < 0.10               |
| Benzo[g,h,i]perylene                | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10               | < 0.10               | < 0.10               |             | < 0.10               | < 0.10      | < 0.10               |
| Total Of 16 PAH's                   | N                    | 2800 | mg/kg | 2.0         | < 2.0       | < 2.0                | < 2.0                | < 2.0                |             | < 2.0                | < 2.0       | < 2.0                |

## Results - Soil

| Client: Eastwood & Partners | Chemtest Job No.:    |      | 17-19872    | 17-19872    | 17-19872    | 17-19872    | 17-19872    | 17-19872    | 17-19872    | 17-19872    | 17-19872    |
|-----------------------------|----------------------|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Quotation No.:              | Chemtest Sample ID.: |      | 490582      | 490583      | 490584      | 490585      | 490586      | 490588      | 490589      | 490590      | 490591      |
|                             | Client Sample ID.:   |      | TP2         | TP3         | TP6         | TP7         | TP11        | TP14        | TP17        | TP18        | TP20        |
|                             | Sample Type:         |      | SOIL        |
|                             | Top Depth (m):       |      | 1.70        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.10        | 0.80        | 0.20        |
|                             | Date Sampled:        |      | 25-Jul-2017 | 25-Jul-2017 | 25-Jul-2017 | 27-Jul-2017 | 25-Jul-2017 | 26-Jul-2017 | 26-Jul-2017 | 26-Jul-2017 | 26-Jul-2017 |
|                             | Asbestos Lab.:       |      | COVENTRY    | COVENTRY    | COVENTRY    |             |             | COVENTRY    | COVENTRY    | COVENTRY    | COVENTRY    |
| Determinand                 | Accred.              | SOP  | Units       | LOD         |             |             |             |             |             |             |             |
| Demeton-O                   | N                    | 2820 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Phorate                     | N                    | 2820 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Demeton-S                   | N                    | 2820 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Disulfoton                  | N                    | 2820 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Fenthion                    | N                    | 2820 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Trichloronate               | N                    | 2820 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Prothiofos                  | N                    | 2820 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Fensulphothion              | N                    | 2820 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Sulprofos                   | N                    | 2820 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Azinphos-Methyl             | N                    | 2820 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Coumaphos                   | N                    | 2820 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Alpha-HCH                   | N                    | 2840 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Gamma-HCH (Lindane)         | N                    | 2840 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Beta-HCH                    | N                    | 2840 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Delta-HCH                   | N                    | 2840 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Heptachlor                  | N                    | 2840 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Aldrin                      | N                    | 2840 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Heptachlor Epoxide          | N                    | 2840 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Gamma-Chlordane             | N                    | 2840 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Alpha-Chlordane             | N                    | 2840 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Endosulfan I                | N                    | 2840 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| 4,4-DDE                     | N                    | 2840 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Dieldrin                    | N                    | 2840 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Endrin                      | N                    | 2840 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| 4,4-DDD                     | N                    | 2840 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Endosulfan II               | N                    | 2840 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Endrin Aldehyde             | N                    | 2840 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| 4,4-DDT                     | N                    | 2840 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Endosulfan Sulphate         | N                    | 2840 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Methoxychlor                | N                    | 2840 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |
| Endrin Ketone               | N                    | 2840 | mg/kg       | 0.20        |             |             |             | < 0.20      |             |             |             |

## Results - Soil

| Client: Eastwood & Partners         | Chemtest Job No.:    |      |       | 17-19872    | 17-19872    | 17-19872    | 17-19872    | 17-19872             | 17-19872    | 17-19872    | 17-19872             | 17-19872    |
|-------------------------------------|----------------------|------|-------|-------------|-------------|-------------|-------------|----------------------|-------------|-------------|----------------------|-------------|
| Quotation No.:                      | Chemtest Sample ID.: |      |       | 490592      | 490593      | 490594      | 490595      | 490596               | 490597      | 490598      | 490599               | 490600      |
|                                     | Client Sample ID.:   |      |       | TP21        | TP23        | TP25        | TP27        | TP27                 | TP29        | TP30        | TP31                 | TP35        |
|                                     | Sample Type:         |      |       | SOIL        | SOIL        | SOIL        | SOIL        | SOIL                 | SOIL        | SOIL        | SOIL                 | SOIL        |
|                                     | Top Depth (m):       |      |       | 0.70        | 0.10        | 0.30        | 0.10        | 0.60                 | 1.30        | 0.10        | 0.40                 | 0.10        |
|                                     | Date Sampled:        |      |       | 26-Jul-2017 | 26-Jul-2017 | 26-Jul-2017 | 27-Jul-2017 | 27-Jul-2017          | 26-Jul-2017 | 27-Jul-2017 | 27-Jul-2017          | 27-Jul-2017 |
|                                     | Asbestos Lab:        |      |       | COVENTRY    | COVENTRY    | COVENTRY    | COVENTRY    | COVENTRY             | COVENTRY    | COVENTRY    | COVENTRY             | COVENTRY    |
| Determinand                         | Accred.              | SOP  | Units | LOD         |             |             |             |                      |             |             |                      |             |
| ACM Type                            | U                    | 2192 |       | N/A         |             |             |             | -                    |             |             | -                    |             |
| Asbestos Identification             | U                    | 2192 | %     | 0.001       |             |             |             | No Asbestos Detected |             |             | No Asbestos Detected |             |
| Moisture                            | N                    | 2030 | %     | 0.020       | 13          | 16          | 14          | 18                   | 15          | 18          | 17                   | 8.9         |
| Soil Colour                         | N                    | 2040 |       | N/A         | Brown       | Brown       | Brown       | Brown                | Brown       | Brown       | Brown                | Brown       |
| Other Material                      | N                    | 2040 |       | N/A         | NONE        | NONE        | NONE        | NONE                 | NONE        | NONE        | NONE                 | NONE        |
| Soil Texture                        | N                    | 2040 |       | N/A         | Sand        | Sand        | Sand        | Clay                 | Clay        | Sand        | Sand                 | Sand        |
| pH                                  | M                    | 2010 |       | N/A         | 7.2         | 6.6         | 6.6         | 6.3                  | 6.6         | 7.4         | 6.7                  | 7.2         |
| Sulphate (2:1 Water Soluble) as SO4 | M                    | 2120 | g/l   | 0.010       | < 0.010     |             | < 0.010     |                      | < 0.010     | < 0.010     |                      | < 0.010     |
| Total Sulphur                       | M                    | 2175 | %     | 0.010       | < 0.010     |             | 0.026       |                      | < 0.010     | < 0.010     |                      | < 0.010     |
| Sulphate (Acid Soluble)             | M                    | 2430 | %     | 0.010       | < 0.010     |             | < 0.010     |                      | < 0.010     | < 0.010     |                      | < 0.010     |
| Arsenic                             | M                    | 2450 | mg/kg | 1.0         | 9.9         | 9.0         | 2.5         | 5.7                  | 7.7         | 7.9         | 4.2                  | 4.2         |
| Cadmium                             | M                    | 2450 | mg/kg | 0.10        | < 0.10      | 0.12        | < 0.10      | < 0.10               | < 0.10      | < 0.10      | < 0.10               | < 0.10      |
| Chromium                            | M                    | 2450 | mg/kg | 1.0         | 32          | 22          | 8.9         | 16                   | 19          | 23          | 7.7                  | 10          |
| Copper                              | M                    | 2450 | mg/kg | 0.50        | 13          | 9.5         | 4.6         | 6.3                  | 6.4         | 9.7         | 8.4                  | 2.1         |
| Mercury                             | M                    | 2450 | mg/kg | 0.10        | < 0.10      | < 0.10      | < 0.10      | < 0.10               | < 0.10      | < 0.10      | < 0.10               | < 0.10      |
| Nickel                              | M                    | 2450 | mg/kg | 0.50        | 26          | 8.9         | 4.1         | 6.6                  | 8.6         | 30          | 3.5                  | 5.3         |
| Lead                                | M                    | 2450 | mg/kg | 0.50        | 11          | 17          | 9.1         | 15                   | 9.7         | 8.3         | 22                   | 6.8         |
| Selenium                            | M                    | 2450 | mg/kg | 0.20        | < 0.20      | < 0.20      | < 0.20      | < 0.20               | < 0.20      | < 0.20      | < 0.20               | < 0.20      |
| Zinc                                | M                    | 2450 | mg/kg | 0.50        | 43          | 34          | 16          | 23                   | 23          | 27          | 36                   | 14          |
| Chromium (Hexavalent)               | N                    | 2490 | mg/kg | 0.50        | < 0.50      | < 0.50      | < 0.50      | < 0.50               | < 0.50      | < 0.50      | < 0.50               | < 0.50      |
| Naphthalene                         | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10      | < 0.10      | < 0.10               | < 0.10      | < 0.10      | 0.10                 | < 0.10      |
| Acenaphthylene                      | N                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10      | < 0.10      | < 0.10               | < 0.10      | < 0.10      | 0.16                 | < 0.10      |
| Acenaphthene                        | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10      | < 0.10      | < 0.10               | < 0.10      | < 0.10      | < 0.10               | < 0.10      |
| Fluorene                            | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10      | < 0.10      | < 0.10               | < 0.10      | < 0.10      | < 0.10               | < 0.10      |
| Phenanthrene                        | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10      | < 0.10      | < 0.10               | < 0.10      | < 0.10      | 0.94                 | < 0.10      |
| Anthracene                          | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10      | < 0.10      | < 0.10               | < 0.10      | < 0.10      | 0.20                 | < 0.10      |
| Fluoranthene                        | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10      | < 0.10      | < 0.10               | < 0.10      | < 0.10      | 1.7                  | < 0.10      |
| Pyrene                              | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10      | < 0.10      | < 0.10               | < 0.10      | < 0.10      | 1.5                  | < 0.10      |
| Benzo[a]anthracene                  | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10      | < 0.10      | 0.11                 | < 0.10      | < 0.10      | 0.73                 | < 0.10      |
| Chrysene                            | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10      | < 0.10      | 0.10                 | < 0.10      | < 0.10      | 0.70                 | < 0.10      |
| Benzo[b]fluoranthene                | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10      | < 0.10      | < 0.10               | < 0.10      | < 0.10      | 0.98                 | < 0.10      |
| Benzo[k]fluoranthene                | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10      | < 0.10      | < 0.10               | < 0.10      | < 0.10      | 0.24                 | < 0.10      |
| Benzo[a]pyrene                      | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10      | < 0.10      | < 0.10               | < 0.10      | < 0.10      | 0.79                 | < 0.10      |
| Indeno(1,2,3-c,d)Pyrene             | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10      | < 0.10      | < 0.10               | < 0.10      | < 0.10      | 0.45                 | < 0.10      |
| Dibenz(a,h)Anthracene               | N                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10      | < 0.10      | < 0.10               | < 0.10      | < 0.10      | < 0.10               | < 0.10      |
| Benzo[g,h,i]perylene                | M                    | 2800 | mg/kg | 0.10        | < 0.10      | < 0.10      | < 0.10      | < 0.10               | < 0.10      | < 0.10      | 0.48                 | < 0.10      |
| Total Of 16 PAH's                   | N                    | 2800 | mg/kg | 2.0         | < 2.0       | < 2.0       | < 2.0       | < 2.0                | < 2.0       | < 2.0       | 9.0                  | < 2.0       |

## Results - Soil

| Client: Eastwood & Partners | Chemtest Job No.:    |      | 17-19872    | 17-19872    | 17-19872    | 17-19872    | 17-19872    | 17-19872    | 17-19872    | 17-19872    | 17-19872    |
|-----------------------------|----------------------|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Quotation No.:              | Chemtest Sample ID.: |      | 490592      | 490593      | 490594      | 490595      | 490596      | 490597      | 490598      | 490599      | 490600      |
|                             | Client Sample ID.:   |      | TP21        | TP23        | TP25        | TP27        | TP27        | TP29        | TP30        | TP31        | TP35        |
|                             | Sample Type:         |      | SOIL        |
|                             | Top Depth (m):       |      | 0.70        | 0.10        | 0.30        | 0.10        | 0.60        | 1.30        | 0.10        | 0.40        | 0.10        |
|                             | Date Sampled:        |      | 26-Jul-2017 | 26-Jul-2017 | 26-Jul-2017 | 27-Jul-2017 | 27-Jul-2017 | 26-Jul-2017 | 27-Jul-2017 | 27-Jul-2017 | 27-Jul-2017 |
|                             | Asbestos Lab:        |      | COVENTRY    |
| Determinand                 | Accred.              | SOP  | Units       | LOD         |             |             |             |             |             |             |             |
| Demeton-O                   | N                    | 2820 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Phorate                     | N                    | 2820 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Demeton-S                   | N                    | 2820 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Disulfoton                  | N                    | 2820 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Fenthion                    | N                    | 2820 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Trichloronate               | N                    | 2820 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Prothiofos                  | N                    | 2820 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Fensulphothion              | N                    | 2820 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Sulprofos                   | N                    | 2820 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Azinphos-Methyl             | N                    | 2820 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Coumaphos                   | N                    | 2820 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Alpha-HCH                   | N                    | 2840 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Gamma-HCH (Lindane)         | N                    | 2840 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Beta-HCH                    | N                    | 2840 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Delta-HCH                   | N                    | 2840 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Heptachlor                  | N                    | 2840 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Aldrin                      | N                    | 2840 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Heptachlor Epoxide          | N                    | 2840 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Gamma-Chlordane             | N                    | 2840 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Alpha-Chlordane             | N                    | 2840 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Endosulfan I                | N                    | 2840 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| 4,4-DDE                     | N                    | 2840 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Dieldrin                    | N                    | 2840 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Endrin                      | N                    | 2840 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| 4,4-DDD                     | N                    | 2840 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Endosulfan II               | N                    | 2840 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Endrin Aldehyde             | N                    | 2840 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| 4,4-DDT                     | N                    | 2840 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Endosulfan Sulphate         | N                    | 2840 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Methoxychlor                | N                    | 2840 | mg/kg       | 0.20        |             |             |             |             |             |             |             |
| Endrin Ketone               | N                    | 2840 | mg/kg       | 0.20        |             |             |             |             |             |             |             |

## Results - Soil

| Client: Eastwood & Partners         | Chemtest Job No.:    |      |       | 17-19872    | 17-19872             | 17-19872    | 17-19872    | 17-19872             | 17-19872    | 17-19872     |
|-------------------------------------|----------------------|------|-------|-------------|----------------------|-------------|-------------|----------------------|-------------|--------------|
| Quotation No.:                      | Chemtest Sample ID.: |      |       | 490601      | 490602               | 490603      | 490604      | 490605               | 490606      | 490607       |
|                                     | Client Sample ID.:   |      |       | TP36        | TP37                 | TP39        | TP41        | TP42                 | TP43        | TP45         |
|                                     | Sample Type:         |      |       | SOIL        | SOIL                 | SOIL        | SOIL        | SOIL                 | SOIL        | SOIL         |
|                                     | Top Depth (m):       |      |       | 0.10        | 0.10                 | 0.10        | 0.20        | 1.00                 | 0.10        | 0.70         |
|                                     | Date Sampled:        |      |       | 27-Jul-2017 | 26-Jul-2017          | 26-Jul-2017 | 27-Jul-2017 | 27-Jul-2017          | 27-Jul-2017 | 27-Jul-2017  |
|                                     | Asbestos Lab:        |      |       | COVENTRY    | COVENTRY             | COVENTRY    | COVENTRY    | COVENTRY             | COVENTRY    | COVENTRY     |
| Determinand                         | Accred.              | SOP  | Units | LOD         |                      |             |             |                      |             |              |
| ACM Type                            | U                    | 2192 |       | N/A         | -                    |             |             | -                    |             |              |
| Asbestos Identification             | U                    | 2192 | %     | 0.001       | No Asbestos Detected |             |             | No Asbestos Detected |             |              |
| Moisture                            | N                    | 2030 | %     | 0.020       | 15                   | 16          | 20          | 17                   | 19          | 13           |
| Soil Colour                         | N                    | 2040 |       | N/A         | Brown                | Brown       | Brown       | Brown                | Brown       | Brown        |
| Other Material                      | N                    | 2040 |       | N/A         | Stones               | NONE        | Stones      | Stones               | NONE        | NONE, 490W06 |
| Soil Texture                        | N                    | 2040 |       | N/A         | Sand                 | Sand        | Sand        | Clay                 | Sand        | Clay         |
| pH                                  | M                    | 2010 |       | N/A         | 6.0                  | 6.3         |             | 7.2                  | 7.3         | 6.4          |
| Sulphate (2:1 Water Soluble) as SO4 | M                    | 2120 | g/l   | 0.010       |                      |             |             | < 0.010              |             | < 0.010      |
| Total Sulphur                       | M                    | 2175 | %     | 0.010       |                      |             |             | 0.010                |             | < 0.010      |
| Sulphate (Acid Soluble)             | M                    | 2430 | %     | 0.010       |                      |             |             | < 0.010              |             | < 0.010      |
| Arsenic                             | M                    | 2450 | mg/kg | 1.0         | 7.7                  | 6.2         |             | 8.3                  | 31          | 5.3          |
| Cadmium                             | M                    | 2450 | mg/kg | 0.10        | 0.11                 | < 0.10      |             | 0.30                 | 0.12        | 0.18         |
| Chromium                            | M                    | 2450 | mg/kg | 1.0         | 22                   | 18          |             | 22                   | 24          | 15           |
| Copper                              | M                    | 2450 | mg/kg | 0.50        | 7.4                  | 7.7         |             | 20                   | 13          | 14           |
| Mercury                             | M                    | 2450 | mg/kg | 0.10        | < 0.10               | < 0.10      |             | 0.11                 | < 0.10      | < 0.10       |
| Nickel                              | M                    | 2450 | mg/kg | 0.50        | 7.7                  | 7.8         |             | 9.4                  | 53          | 8.5          |
| Lead                                | M                    | 2450 | mg/kg | 0.50        | 24                   | 17          |             | 23                   | 9.9         | 20           |
| Selenium                            | M                    | 2450 | mg/kg | 0.20        | < 0.20               | < 0.20      |             | < 0.20               | < 0.20      | < 0.20       |
| Zinc                                | M                    | 2450 | mg/kg | 0.50        | 31                   | 28          |             | 49                   | 43          | 33           |
| Chromium (Hexavalent)               | N                    | 2490 | mg/kg | 0.50        | < 0.50               | < 0.50      |             | < 0.50               | < 0.50      | < 0.50       |
| Naphthalene                         | M                    | 2800 | mg/kg | 0.10        | < 0.10               | < 0.10      |             | < 0.10               | < 0.10      | < 0.10       |
| Acenaphthylene                      | N                    | 2800 | mg/kg | 0.10        | < 0.10               | < 0.10      |             | < 0.10               | < 0.10      | < 0.10       |
| Acenaphthene                        | M                    | 2800 | mg/kg | 0.10        | < 0.10               | < 0.10      |             | < 0.10               | < 0.10      | < 0.10       |
| Fluorene                            | M                    | 2800 | mg/kg | 0.10        | < 0.10               | < 0.10      |             | < 0.10               | < 0.10      | < 0.10       |
| Phenanthrene                        | M                    | 2800 | mg/kg | 0.10        | < 0.10               | < 0.10      |             | < 0.10               | < 0.10      | < 0.10       |
| Anthracene                          | M                    | 2800 | mg/kg | 0.10        | < 0.10               | < 0.10      |             | < 0.10               | < 0.10      | < 0.10       |
| Fluoranthene                        | M                    | 2800 | mg/kg | 0.10        | < 0.10               | < 0.10      |             | < 0.10               | < 0.10      | < 0.10       |
| Pyrene                              | M                    | 2800 | mg/kg | 0.10        | < 0.10               | < 0.10      |             | < 0.10               | < 0.10      | < 0.10       |
| Benzo[a]anthracene                  | M                    | 2800 | mg/kg | 0.10        | < 0.10               | < 0.10      |             | < 0.10               | < 0.10      | < 0.10       |
| Chrysene                            | M                    | 2800 | mg/kg | 0.10        | < 0.10               | < 0.10      |             | < 0.10               | < 0.10      | < 0.10       |
| Benzo[b]fluoranthene                | M                    | 2800 | mg/kg | 0.10        | < 0.10               | < 0.10      |             | < 0.10               | < 0.10      | < 0.10       |
| Benzo[k]fluoranthene                | M                    | 2800 | mg/kg | 0.10        | < 0.10               | < 0.10      |             | < 0.10               | < 0.10      | < 0.10       |
| Benzo[a]pyrene                      | M                    | 2800 | mg/kg | 0.10        | < 0.10               | < 0.10      |             | < 0.10               | < 0.10      | < 0.10       |
| Indeno(1,2,3-c,d)Pyrene             | M                    | 2800 | mg/kg | 0.10        | < 0.10               | < 0.10      |             | < 0.10               | < 0.10      | < 0.10       |
| Dibenz(a,h)Anthracene               | N                    | 2800 | mg/kg | 0.10        | < 0.10               | < 0.10      |             | < 0.10               | < 0.10      | < 0.10       |
| Benzo[g,h,i]perylene                | M                    | 2800 | mg/kg | 0.10        | < 0.10               | < 0.10      |             | < 0.10               | < 0.10      | < 0.10       |
| Total Of 16 PAH's                   | N                    | 2800 | mg/kg | 2.0         | < 2.0                | < 2.0       |             | < 2.0                | < 2.0       | < 2.0        |

## Results - Soil

| Client: Eastwood & Partners | Chemtest Job No.:    |      | 17-19872    | 17-19872    | 17-19872    | 17-19872    | 17-19872    | 17-19872    | 17-19872    |
|-----------------------------|----------------------|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Quotation No.:              | Chemtest Sample ID.: |      | 490601      | 490602      | 490603      | 490604      | 490605      | 490606      | 490607      |
|                             | Client Sample ID.:   |      | TP36        | TP37        | TP39        | TP41        | TP42        | TP43        | TP45        |
|                             | Sample Type:         |      | SOIL        |
|                             | Top Depth (m):       |      | 0.10        | 0.10        | 0.10        | 0.20        | 1.00        | 0.10        | 0.70        |
|                             | Date Sampled:        |      | 27-Jul-2017 | 26-Jul-2017 | 26-Jul-2017 | 27-Jul-2017 | 27-Jul-2017 | 27-Jul-2017 | 27-Jul-2017 |
|                             | Asbestos Lab:        |      | COVENTRY    |
| Determinand                 | Accred.              | SOP  | Units       | LOD         |             |             |             |             |             |
| Demeton-O                   | N                    | 2820 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Phorate                     | N                    | 2820 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Demeton-S                   | N                    | 2820 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Disulfoton                  | N                    | 2820 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Fenthion                    | N                    | 2820 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Trichloronate               | N                    | 2820 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Prothiofos                  | N                    | 2820 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Fensulphothion              | N                    | 2820 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Sulprofos                   | N                    | 2820 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Azinphos-Methyl             | N                    | 2820 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Coumaphos                   | N                    | 2820 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Alpha-HCH                   | N                    | 2840 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Gamma-HCH (Lindane)         | N                    | 2840 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Beta-HCH                    | N                    | 2840 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Delta-HCH                   | N                    | 2840 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Heptachlor                  | N                    | 2840 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Aldrin                      | N                    | 2840 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Heptachlor Epoxide          | N                    | 2840 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Gamma-Chlordane             | N                    | 2840 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Alpha-Chlordane             | N                    | 2840 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Endosulfan I                | N                    | 2840 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| 4,4-DDE                     | N                    | 2840 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Dieldrin                    | N                    | 2840 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Endrin                      | N                    | 2840 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| 4,4-DDD                     | N                    | 2840 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Endosulfan II               | N                    | 2840 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Endrin Aldehyde             | N                    | 2840 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| 4,4-DDT                     | N                    | 2840 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Endosulfan Sulphate         | N                    | 2840 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Methoxychlor                | N                    | 2840 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |
| Endrin Ketone               | N                    | 2840 | mg/kg       | 0.20        |             | < 0.20      |             |             |             |

| SOP  | Title                                                              | Parameters included                                                                                                                                                                                                                                                       | Method summary                                                                                                                                                                         |
|------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2010 | pH Value of Soils                                                  | pH                                                                                                                                                                                                                                                                        | pH Meter                                                                                                                                                                               |
| 2030 | Moisture and Stone Content of Soils(Requirement of MCERTS)         | Moisture content                                                                                                                                                                                                                                                          | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.                                                                                   |
| 2040 | Soil Description(Requirement of MCERTS)                            | Soil description                                                                                                                                                                                                                                                          | As received soil is described based upon BS5930                                                                                                                                        |
| 2120 | Water Soluble Boron, Sulphate, Magnesium & Chromium                | Boron; Sulphate; Magnesium; Chromium                                                                                                                                                                                                                                      | Aqueous extraction / ICP-OES                                                                                                                                                           |
| 2175 | Total Sulphur in Soils                                             | Total Sulphur                                                                                                                                                                                                                                                             | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                                             |
| 2192 | Asbestos                                                           | Asbestos                                                                                                                                                                                                                                                                  | Polarised light microscopy / Gravimetry                                                                                                                                                |
| 2430 | Total Sulphate in soils                                            | Total Sulphate                                                                                                                                                                                                                                                            | Acid digestion followed by determination of sulphate in extract by ICP-OES.                                                                                                            |
| 2450 | Acid Soluble Metals in Soils                                       | Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc                                                                                                                  | Acid digestion followed by determination of metals in extract by ICP-MS.                                                                                                               |
| 2490 | Hexavalent Chromium in Soils                                       | Chromium [VI]                                                                                                                                                                                                                                                             | Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide. |
| 2800 | Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS | Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene* | Dichloromethane extraction / GC-MS                                                                                                                                                     |
| 2820 | Organophosphorus (O-P) Pesticides in Soils by GC-MS                | Organophosphorus pesticide representative suite including Parathion, Malathion etc, plus client specific determinands                                                                                                                                                     | Dichloromethane extraction / GC-MS                                                                                                                                                     |
| 2840 | Organochlorine (O-Cl) Pesticides in Soils by GC-MS                 | Organochlorine pesticide representative suite including DDT and its metabolites, 'drins' and HCH etc, plus client specific determinands                                                                                                                                   | Dichloromethane extraction / GC-MS                                                                                                                                                     |

## Report Information

### **Key**

---

|     |                                                                                                               |
|-----|---------------------------------------------------------------------------------------------------------------|
| U   | UKAS accredited                                                                                               |
| M   | MCERTS and UKAS accredited                                                                                    |
| N   | Unaccredited                                                                                                  |
| S   | This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis     |
| SN  | This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis |
| T   | This analysis has been subcontracted to an unaccredited laboratory                                            |
| I/S | Insufficient Sample                                                                                           |
| U/S | Unsuitable Sample                                                                                             |
| N/E | not evaluated                                                                                                 |
| <   | "less than"                                                                                                   |
| >   | "greater than"                                                                                                |

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

### **Sample Deviation Codes**

---

- A - Date of sampling not supplied
- B - Sample age exceeds stability time (sampling to extraction)
- C - Sample not received in appropriate containers
- D - Broken Container
- E - Insufficient Sample

### **Sample Retention and Disposal**

---

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to:

[customerservices@chemtest.co.uk](mailto:customerservices@chemtest.co.uk)



Eastwood Consulting Engineers  
Unit3  
Gander Down Barns, Rodfield Ln  
Nr Alresford

**t:** 0125 2360580

**e:** Alex.Luxman@eastwoodce.com

i2 Analytical Ltd.  
7 Woodshots Meadow,  
Croxley Green  
Business Park,  
Watford,  
Herts,  
WD18 8YS

**t:** 01923 225404

**f:** 01923 237404

**e:** info-i2analytical@normecgroup.com

## Analytical Report Number : 25-042363

Replaces Analytical Report Number: 25-042363, issue no. 1

Additional analysis undertaken.

Asbestos Quantification added to samples 642684 & 691 as per client's request

|                             |                                                |                                                        |            |
|-----------------------------|------------------------------------------------|--------------------------------------------------------|------------|
| <b>Project / Site name:</b> | Finchampstead - P11, P12, Neighbourhood Centre | <b>Samples received on:</b>                            | 11/08/2025 |
| <b>Your job number:</b>     | 41623                                          | <b>Samples instructed on/<br/>Analysis started on:</b> | 11/08/2025 |
| <b>Your order number:</b>   |                                                | <b>Analysis completed by:</b>                          | 11/09/2025 |
| <b>Report Issue Number:</b> | 2                                              | <b>Report issued on:</b>                               | 12/09/2025 |
| <b>Samples Analysed:</b>    | 22 soil samples                                |                                                        |            |



Signed:

Rachel Chappell  
Key Account Manager  
**For & on behalf of i2 Analytical Ltd.**

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

|           |                                 |
|-----------|---------------------------------|
| soils     | - 4 weeks from reporting        |
| leachates | - 2 weeks from reporting        |
| waters    | - 2 weeks from reporting        |
| asbestos  | - 6 months from reporting       |
| air       | - once the analysis is complete |

Excel copies of reports are only valid when accompanied by this PDF certificate.

Retention period for records and reports is minimum 6 years from the date of issue of the final report.

Some records may be kept for longer according to other legal/best practice requirements.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement.

Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 25-042363

Project / Site name: Finchampstead - P11, P12, Neighbourhood Centre

| Lab Sample Number                       | 642683           | 642684                     | 642685                       | 642686           | 642687           |  |  |
|-----------------------------------------|------------------|----------------------------|------------------------------|------------------|------------------|--|--|
| Sample Reference                        | TP101 - ES1 - MG | TP101 - ES2 - MG           | TP102 - ES1 - MG             | TP102 - ES2 - NG | TP103 - ES2 - MG |  |  |
| Sample Number                           | None Supplied    | None Supplied              | None Supplied                | None Supplied    | None Supplied    |  |  |
| Water Matrix                            | N/A              | N/A                        | N/A                          | N/A              | N/A              |  |  |
| Depth (m)                               | 0.15             | 0.32                       | 0.20                         | 0.60             | 0.45             |  |  |
| Date Sampled                            | 06/08/2025       | 06/08/2025                 | 06/08/2025                   | 06/08/2025       | 06/08/2025       |  |  |
| Time Taken                              | None Supplied    | None Supplied              | None Supplied                | None Supplied    | None Supplied    |  |  |
| Analytical Parameter<br>(Soil Analysis) | Units            | Test Limit of<br>detection | Test Accreditation<br>Status |                  |                  |  |  |

|                               |    |      |      |       |       |      |       |       |
|-------------------------------|----|------|------|-------|-------|------|-------|-------|
| Stone Content                 | %  | 0.1  | NONE | < 0.1 | < 0.1 | 42.6 | < 0.1 | < 0.1 |
| Moisture Content              | %  | 0.01 | NONE | 8.8   | 17    | 12   | 20    | 16    |
| Total mass of sample received | kg | 0.1  | NONE | 0.7   | 0.6   | 0.7  | 0.7   | 0.7   |

#### Asbestos

|                                        |      |     |           |              |              |              |   |              |
|----------------------------------------|------|-----|-----------|--------------|--------------|--------------|---|--------------|
| Asbestos in Soil Detected/Not Detected | Type | N/A | ISO 17025 | Not-detected | Detected     | Not-detected | - | Not-detected |
| Asbestos Analyst ID                    | N/A  | N/A | N/A       | WIK          | WIK          | WIK          | - | WIK          |
| Analysis completed                     | N/A  | N/A | N/A       | 19/08/2025   | 19/08/2025   | 19/08/2025   | - | 19/08/2025   |
| Actinolite detected                    | Type | N/A | ISO 17025 | -            | Not-detected | -            | - | -            |
| Amosite detected                       | Type | N/A | ISO 17025 | -            | Not-detected | -            | - | -            |
| Anthophyllite detected                 | Type | N/A | ISO 17025 | -            | Not-detected | -            | - | -            |
| Chrysotile detected                    | Type | N/A | ISO 17025 | -            | Detected     | -            | - | -            |
| Crocidolite detected                   | Type | N/A | ISO 17025 | -            | Not-detected | -            | - | -            |
| Tremolite detected                     | Type | N/A | ISO 17025 | -            | Not-detected | -            | - | -            |

|                                     |   |       |           |   |         |   |   |   |
|-------------------------------------|---|-------|-----------|---|---------|---|---|---|
| Asbestos % by hand picking/weighing | % | 0.001 | ISO 17025 | - | < 0.001 | - | - | - |
|-------------------------------------|---|-------|-----------|---|---------|---|---|---|

|                                                   |      |     |           |   |              |   |   |   |
|---------------------------------------------------|------|-----|-----------|---|--------------|---|---|---|
| Asbestos Containing Material Types Detected (ACM) | Type | N/A | ISO 17025 | - | Loose Fibres | - | - | - |
|---------------------------------------------------|------|-----|-----------|---|--------------|---|---|---|

#### General Inorganics

|                                                                         |          |         |        |       |       |       |       |       |
|-------------------------------------------------------------------------|----------|---------|--------|-------|-------|-------|-------|-------|
| pH (L099)                                                               | pH Units | N/A     | MCERTS | 9.7   | 7     | 10.2  | 8     | 7.7   |
| Total Sulphate as SO <sub>4</sub>                                       | %        | 0.005   | MCERTS | 0.431 | 0.094 | 1.29  | 0.062 | 0.131 |
| Water Soluble Sulphate as SO <sub>4</sub> 16hr extraction (2:1)         | mg/kg    | 2.5     | MCERTS | 1400  | 860   | 2000  | 350   | 820   |
| Water Soluble SO <sub>4</sub> 16hr extraction (2:1 Leachate Equivalent) | g/l      | 0.00125 | MCERTS | 0.694 | 0.432 | 0.996 | 0.175 | 0.408 |
| Water Soluble SO <sub>4</sub> 16hr extraction (2:1 Leachate Equivalent) | mg/l     | 1.25    | MCERTS | 694   | 432   | 996   | 175   | 408   |
| Total Sulphur                                                           | mg/kg    | 50      | MCERTS | 1800  | 770   | 4400  | 220   | 750   |
| Total Sulphur                                                           | %        | 0.005   | MCERTS | 0.178 | 0.077 | 0.444 | 0.022 | 0.075 |

#### Speciated PAHs

|                        |       |      |           |        |        |      |        |        |
|------------------------|-------|------|-----------|--------|--------|------|--------|--------|
| Naphthalene            | mg/kg | 0.05 | MCERTS    | < 0.05 | < 0.05 | 0.49 | < 0.05 | < 0.05 |
| Acenaphthylene         | mg/kg | 0.05 | MCERTS    | < 0.05 | < 0.05 | 0.3  | < 0.05 | < 0.05 |
| Acenaphthene           | mg/kg | 0.05 | MCERTS    | < 0.05 | < 0.05 | 0.66 | < 0.05 | < 0.05 |
| Fluorene               | mg/kg | 0.05 | MCERTS    | < 0.05 | < 0.05 | 0.86 | < 0.05 | < 0.05 |
| Phenanthrene           | mg/kg | 0.05 | MCERTS    | 0.4    | < 0.05 | 5.8  | < 0.05 | 0.1    |
| Anthracene             | mg/kg | 0.05 | MCERTS    | 0.11   | < 0.05 | 1.9  | < 0.05 | < 0.05 |
| Fluoranthene           | mg/kg | 0.05 | MCERTS    | 1      | < 0.05 | 8.1  | < 0.05 | 0.31   |
| Pyrene                 | mg/kg | 0.05 | MCERTS    | 1.1    | < 0.05 | 7.3  | < 0.05 | 0.29   |
| Benzo(a)anthracene     | mg/kg | 0.05 | MCERTS    | 0.54   | < 0.05 | 3.6  | < 0.05 | 0.16   |
| Chrysene               | mg/kg | 0.05 | MCERTS    | 0.65   | < 0.05 | 3.7  | < 0.05 | 0.19   |
| Benzo(b)fluoranthene   | mg/kg | 0.05 | ISO 17025 | 0.85   | < 0.05 | 3.8  | < 0.05 | 0.31   |
| Benzo(k)fluoranthene   | mg/kg | 0.05 | ISO 17025 | 0.33   | < 0.05 | 2.3  | < 0.05 | 0.1    |
| Benzo(a)pyrene         | mg/kg | 0.05 | MCERTS    | 0.74   | < 0.05 | 4.3  | < 0.05 | 0.25   |
| Indeno(1,2,3-cd)pyrene | mg/kg | 0.05 | MCERTS    | 0.36   | < 0.05 | 2    | < 0.05 | 0.14   |
| Dibenz(a,h)anthracene  | mg/kg | 0.05 | MCERTS    | 0.07   | < 0.05 | 0.37 | < 0.05 | < 0.05 |
| Benzo(ghi)perylene     | mg/kg | 0.05 | MCERTS    | 0.41   | < 0.05 | 2.1  | < 0.05 | 0.16   |

Analytical Report Number: 25-042363

Project / Site name: Finchampstead - P11, P12, Neighbourhood Centre

| Lab Sample Number                       | 642683           | 642684                     | 642685                       | 642686           | 642687           |
|-----------------------------------------|------------------|----------------------------|------------------------------|------------------|------------------|
| Sample Reference                        | TP101 - ES1 - MG | TP101 - ES2 - MG           | TP102 - ES1 - MG             | TP102 - ES2 - NG | TP103 - ES2 - MG |
| Sample Number                           | None Supplied    | None Supplied              | None Supplied                | None Supplied    | None Supplied    |
| Water Matrix                            | N/A              | N/A                        | N/A                          | N/A              | N/A              |
| Depth (m)                               | 0.15             | 0.32                       | 0.20                         | 0.60             | 0.45             |
| Date Sampled                            | 06/08/2025       | 06/08/2025                 | 06/08/2025                   | 06/08/2025       | 06/08/2025       |
| Time Taken                              | None Supplied    | None Supplied              | None Supplied                | None Supplied    | None Supplied    |
| Analytical Parameter<br>(Soil Analysis) | Units            | Test Limit of<br>detection | Test Accreditation<br>Status |                  |                  |

#### Total PAH

|                             |       |     |           |      |        |      |        |      |
|-----------------------------|-------|-----|-----------|------|--------|------|--------|------|
| Speciated Total EPA-16 PAHs | mg/kg | 0.8 | ISO 17025 | 6.55 | < 0.80 | 47.4 | < 0.80 | 2.01 |
|-----------------------------|-------|-----|-----------|------|--------|------|--------|------|

#### Heavy Metals / Metalloids

|                                   |       |     |        |       |       |       |       |       |
|-----------------------------------|-------|-----|--------|-------|-------|-------|-------|-------|
| Arsenic (aqua regia extractable)  | mg/kg | 1   | MCERTS | 10    | 7.8   | 6.1   | 11    | 7.8   |
| Cadmium (aqua regia extractable)  | mg/kg | 0.2 | MCERTS | 0.6   | < 0.2 | < 0.2 | < 0.2 | < 0.2 |
| Chromium (hexavalent)             | mg/kg | 1.8 | MCERTS | < 1.8 | < 1.8 | < 1.8 | < 1.8 | < 1.8 |
| Chromium (VI) by IC               | mg/kg | 1.8 | NONE   | -     | -     | -     | -     | -     |
| Chromium (III) by IC              | mg/kg | 1   | NONE   | -     | -     | -     | -     | -     |
| Chromium (aqua regia extractable) | mg/kg | 1   | MCERTS | 28    | 27    | 21    | 44    | 25    |
| Copper (aqua regia extractable)   | mg/kg | 1   | MCERTS | 73    | 14    | 16    | 18    | 24    |
| Lead (aqua regia extractable)     | mg/kg | 1   | MCERTS | 41    | 19    | 9.7   | 11    | 21    |
| Mercury (aqua regia extractable)  | mg/kg | 0.3 | MCERTS | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 |
| Nickel (aqua regia extractable)   | mg/kg | 1   | MCERTS | 14    | 9.1   | 12    | 15    | 9.4   |
| Selenium (aqua regia extractable) | mg/kg | 1   | MCERTS | < 1.0 | < 1.0 | < 1.0 | < 1.0 | < 1.0 |
| Zinc (aqua regia extractable)     | mg/kg | 1   | MCERTS | 230   | 50    | 62    | 44    | 140   |

#### Petroleum Hydrocarbons

|                                                          |       |      |        |   |         |   |   |         |
|----------------------------------------------------------|-------|------|--------|---|---------|---|---|---------|
| TPHCWG - Aliphatic >EC5 - EC6 <sub>HS_ID_AL</sub>        | mg/kg | 0.01 | MCERTS | - | < 0.010 | - | - | < 0.010 |
| TPHCWG - Aliphatic >EC6 - EC8 <sub>HS_ID_AL</sub>        | mg/kg | 0.01 | MCERTS | - | < 0.010 | - | - | < 0.010 |
| TPHCWG - Aliphatic >EC8 - EC10 <sub>HS_ID_AL</sub>       | mg/kg | 0.01 | MCERTS | - | < 0.010 | - | - | < 0.010 |
| TPHCWG - Aliphatic >EC10 - EC12 <sub>EH CU_ID_AL</sub>   | mg/kg | 1    | MCERTS | - | < 1.0   | - | - | < 1.0   |
| TPHCWG - Aliphatic >EC12 - EC16 <sub>EH CU_ID_AL</sub>   | mg/kg | 2    | MCERTS | - | < 2.0   | - | - | < 2.0   |
| TPHCWG - Aliphatic >EC16 - EC21 <sub>EH CU_ID_AL</sub>   | mg/kg | 8    | MCERTS | - | < 8.0   | - | - | < 8.0   |
| TPHCWG - Aliphatic >EC21 - EC35 <sub>EH CU_ID_AL</sub>   | mg/kg | 8    | MCERTS | - | < 8.0   | - | - | 14      |
| TPHCWG - Aliphatic >EC5 - EC35 <sub>EH CU HS_ID_AL</sub> | mg/kg | 10   | NONE   | - | < 10    | - | - | 14      |

|                                                         |       |      |        |   |         |   |   |         |
|---------------------------------------------------------|-------|------|--------|---|---------|---|---|---------|
| TPHCWG - Aromatic >EC5 - EC7 <sub>HS_ID_AR</sub>        | mg/kg | 0.01 | MCERTS | - | < 0.010 | - | - | < 0.010 |
| TPHCWG - Aromatic >EC7 - EC8 <sub>HS_ID_AR</sub>        | mg/kg | 0.01 | MCERTS | - | < 0.010 | - | - | < 0.010 |
| TPHCWG - Aromatic >EC8 - EC10 <sub>HS_ID_AR</sub>       | mg/kg | 0.02 | MCERTS | - | < 0.020 | - | - | < 0.020 |
| TPHCWG - Aromatic >EC10 - EC12 <sub>EH CU_ID_AR</sub>   | mg/kg | 1    | MCERTS | - | < 1.0   | - | - | < 1.0   |
| TPHCWG - Aromatic >EC12 - EC16 <sub>EH CU_ID_AR</sub>   | mg/kg | 2    | MCERTS | - | < 2.0   | - | - | < 2.0   |
| TPHCWG - Aromatic >EC16 - EC21 <sub>EH CU_ID_AR</sub>   | mg/kg | 10   | MCERTS | - | < 10    | - | - | < 10    |
| TPHCWG - Aromatic >EC21 - EC35 <sub>EH CU_ID_AR</sub>   | mg/kg | 10   | MCERTS | - | < 10    | - | - | < 10    |
| TPHCWG - Aromatic >EC5 - EC35 <sub>EH CU HS_ID_AR</sub> | mg/kg | 10   | NONE   | - | < 10    | - | - | < 10    |

#### VOCs

|                                    |       |   |        |   |       |   |   |       |
|------------------------------------|-------|---|--------|---|-------|---|---|-------|
| MTBE (Methyl Tertiary Butyl Ether) | µg/kg | 5 | MCERTS | - | < 5.0 | - | - | < 5.0 |
| Benzene                            | µg/kg | 5 | MCERTS | - | < 5.0 | - | - | < 5.0 |
| Toluene                            | µg/kg | 5 | MCERTS | - | < 5.0 | - | - | < 5.0 |
| Ethylbenzene                       | µg/kg | 5 | MCERTS | - | < 5.0 | - | - | < 5.0 |
| p & m-Xylene                       | µg/kg | 8 | MCERTS | - | < 8.0 | - | - | < 8.0 |
| o-Xylene                           | µg/kg | 5 | MCERTS | - | < 5.0 | - | - | < 5.0 |

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Analytical Report Number: 25-042363

Project / Site name: Finchampstead - P11, P12, Neighbourhood Centre

| Lab Sample Number                       | 642688           | 642689                     | 642690                       | 642691         | 642692         |
|-----------------------------------------|------------------|----------------------------|------------------------------|----------------|----------------|
| Sample Reference                        | TP103 - ES3 - NG | TP1 - ES2 - MG             | TP1 - ES3 - NG               | TP2 - ES1 - MG | TP2 - ES2 - NG |
| Sample Number                           | None Supplied    | None Supplied              | None Supplied                | None Supplied  | None Supplied  |
| Water Matrix                            | N/A              | N/A                        | N/A                          | N/A            | N/A            |
| Depth (m)                               | 0.60             | 0.60                       | 0.80                         | 0.10           | 0.45           |
| Date Sampled                            | 06/08/2025       | 06/08/2025                 | 06/08/2025                   | 06/08/2025     | 06/08/2025     |
| Time Taken                              | None Supplied    | None Supplied              | None Supplied                | None Supplied  | None Supplied  |
| Analytical Parameter<br>(Soil Analysis) | Units            | Test Limit of<br>detection | Test Accreditation<br>Status |                |                |

|                               |    |      |      |       |      |       |      |       |
|-------------------------------|----|------|------|-------|------|-------|------|-------|
| Stone Content                 | %  | 0.1  | NONE | < 0.1 | 24.8 | < 0.1 | 29.1 | < 0.1 |
| Moisture Content              | %  | 0.01 | NONE | 18    | 8.8  | 14    | 6    | 11    |
| Total mass of sample received | kg | 0.1  | NONE | 0.7   | 0.7  | 0.7   | 0.7  | 0.7   |

#### Asbestos

|                                        |      |     |           |   |              |   |              |   |
|----------------------------------------|------|-----|-----------|---|--------------|---|--------------|---|
| Asbestos in Soil Detected/Not Detected | Type | N/A | ISO 17025 | - | Not-detected | - | Detected     | - |
| Asbestos Analyst ID                    | N/A  | N/A | N/A       | - | PKU          | - | PKU          | - |
| Analysis completed                     | N/A  | N/A | N/A       | - | 19/08/2025   | - | 19/08/2025   | - |
| Actinolite detected                    | Type | N/A | ISO 17025 | - | -            | - | Not-detected | - |
| Amosite detected                       | Type | N/A | ISO 17025 | - | -            | - | Not-detected | - |
| Anthophyllite detected                 | Type | N/A | ISO 17025 | - | -            | - | Not-detected | - |
| Chrysotile detected                    | Type | N/A | ISO 17025 | - | -            | - | Detected     | - |
| Crocidolite detected                   | Type | N/A | ISO 17025 | - | -            | - | Not-detected | - |
| Tremolite detected                     | Type | N/A | ISO 17025 | - | -            | - | Not-detected | - |

|                                     |   |       |           |   |   |   |         |   |
|-------------------------------------|---|-------|-----------|---|---|---|---------|---|
| Asbestos % by hand picking/weighing | % | 0.001 | ISO 17025 | - | - | - | < 0.001 | - |
|-------------------------------------|---|-------|-----------|---|---|---|---------|---|

|                                                   |      |     |           |   |   |   |              |   |
|---------------------------------------------------|------|-----|-----------|---|---|---|--------------|---|
| Asbestos Containing Material Types Detected (ACM) | Type | N/A | ISO 17025 | - | - | - | Loose Fibres | - |
|---------------------------------------------------|------|-----|-----------|---|---|---|--------------|---|

#### General Inorganics

|                                                                         |          |         |        |       |       |       |       |       |
|-------------------------------------------------------------------------|----------|---------|--------|-------|-------|-------|-------|-------|
| pH (L099)                                                               | pH Units | N/A     | MCERTS | 6.8   | 9.5   | 8     | 8.4   | 8     |
| Total Sulphate as SO <sub>4</sub>                                       | %        | 0.005   | MCERTS | 0.038 | 0.607 | 0.073 | 0.442 | 0.054 |
| Water Soluble Sulphate as SO <sub>4</sub> 16hr extraction (2:1)         | mg/kg    | 2.5     | MCERTS | 210   | 1400  | 680   | 1700  | 210   |
| Water Soluble SO <sub>4</sub> 16hr extraction (2:1 Leachate Equivalent) | g/l      | 0.00125 | MCERTS | 0.103 | 0.677 | 0.338 | 0.862 | 0.106 |
| Water Soluble SO <sub>4</sub> 16hr extraction (2:1 Leachate Equivalent) | mg/l     | 1.25    | MCERTS | 103   | 677   | 338   | 862   | 106   |
| Total Sulphur                                                           | mg/kg    | 50      | MCERTS | 150   | 2400  | 960   | 1600  | 260   |
| Total Sulphur                                                           | %        | 0.005   | MCERTS | 0.015 | 0.238 | 0.096 | 0.16  | 0.026 |

#### Speciated PAHs

|                        |       |      |           |        |      |        |        |        |
|------------------------|-------|------|-----------|--------|------|--------|--------|--------|
| Naphthalene            | mg/kg | 0.05 | MCERTS    | < 0.05 | 0.06 | < 0.05 | < 0.05 | < 0.05 |
| Acenaphthylene         | mg/kg | 0.05 | MCERTS    | < 0.05 | 0.12 | < 0.05 | 0.08   | < 0.05 |
| Acenaphthene           | mg/kg | 0.05 | MCERTS    | < 0.05 | 0.13 | < 0.05 | < 0.05 | < 0.05 |
| Fluorene               | mg/kg | 0.05 | MCERTS    | < 0.05 | 0.16 | < 0.05 | < 0.05 | < 0.05 |
| Phenanthrene           | mg/kg | 0.05 | MCERTS    | < 0.05 | 1.9  | 0.25   | 0.62   | < 0.05 |
| Anthracene             | mg/kg | 0.05 | MCERTS    | < 0.05 | 0.6  | < 0.05 | 0.23   | < 0.05 |
| Fluoranthene           | mg/kg | 0.05 | MCERTS    | 0.06   | 3.5  | 0.51   | 1.7    | < 0.05 |
| Pyrene                 | mg/kg | 0.05 | MCERTS    | 0.05   | 3.7  | 0.45   | 1.6    | < 0.05 |
| Benzo(a)anthracene     | mg/kg | 0.05 | MCERTS    | < 0.05 | 1.9  | 0.22   | 1      | < 0.05 |
| Chrysene               | mg/kg | 0.05 | MCERTS    | < 0.05 | 2    | 0.26   | 1.1    | < 0.05 |
| Benzo(b)fluoranthene   | mg/kg | 0.05 | ISO 17025 | < 0.05 | 3    | 0.33   | 1.5    | < 0.05 |
| Benzo(k)fluoranthene   | mg/kg | 0.05 | ISO 17025 | < 0.05 | 0.98 | 0.18   | 0.76   | < 0.05 |
| Benzo(a)pyrene         | mg/kg | 0.05 | MCERTS    | < 0.05 | 2.7  | 0.33   | 1.4    | < 0.05 |
| Indeno(1,2,3-cd)pyrene | mg/kg | 0.05 | MCERTS    | < 0.05 | 1.5  | 0.16   | 0.79   | < 0.05 |
| Dibenz(a,h)anthracene  | mg/kg | 0.05 | MCERTS    | < 0.05 | 0.3  | < 0.05 | 0.15   | < 0.05 |
| Benzo(ghi)perylene     | mg/kg | 0.05 | MCERTS    | < 0.05 | 1.7  | 0.17   | 0.83   | < 0.05 |

Analytical Report Number: 25-042363

Project / Site name: Finchampstead - P11, P12, Neighbourhood Centre

| Lab Sample Number                       | 642688           | 642689                     | 642690                       | 642691         | 642692         |
|-----------------------------------------|------------------|----------------------------|------------------------------|----------------|----------------|
| Sample Reference                        | TP103 - ES3 - NG | TP1 - ES2 - MG             | TP1 - ES3 - NG               | TP2 - ES1 - MG | TP2 - ES2 - NG |
| Sample Number                           | None Supplied    | None Supplied              | None Supplied                | None Supplied  | None Supplied  |
| Water Matrix                            | N/A              | N/A                        | N/A                          | N/A            | N/A            |
| Depth (m)                               | 0.60             | 0.60                       | 0.80                         | 0.10           | 0.45           |
| Date Sampled                            | 06/08/2025       | 06/08/2025                 | 06/08/2025                   | 06/08/2025     | 06/08/2025     |
| Time Taken                              | None Supplied    | None Supplied              | None Supplied                | None Supplied  | None Supplied  |
| Analytical Parameter<br>(Soil Analysis) | Units            | Test Limit of<br>detection | Test Accreditation<br>Status |                |                |

#### Total PAH

| Speciated Total EPA-16 PAHs | mg/kg | 0.8 | ISO 17025 | < 0.80 | 24.1 | 2.85 | 11.9 | < 0.80 |
|-----------------------------|-------|-----|-----------|--------|------|------|------|--------|
|                             |       |     |           |        |      |      |      |        |

#### Heavy Metals / Metalloids

|                                   |       |     |        |       |       |       |       |       |
|-----------------------------------|-------|-----|--------|-------|-------|-------|-------|-------|
| Arsenic (aqua regia extractable)  | mg/kg | 1   | MCERTS | 11    | 8.5   | 5.9   | 8.7   | 8.2   |
| Cadmium (aqua regia extractable)  | mg/kg | 0.2 | MCERTS | < 0.2 | 0.3   | < 0.2 | 0.8   | < 0.2 |
| Chromium (hexavalent)             | mg/kg | 1.8 | MCERTS | < 1.8 | < 1.8 | < 1.8 | < 1.8 | < 1.8 |
| Chromium (VI) by IC               | mg/kg | 1.8 | NONE   | -     | -     | -     | -     | -     |
| Chromium (III) by IC              | mg/kg | 1   | NONE   | -     | -     | -     | -     | -     |
| Chromium (aqua regia extractable) | mg/kg | 1   | MCERTS | 44    | 23    | 26    | 25    | 28    |
| Copper (aqua regia extractable)   | mg/kg | 1   | MCERTS | 23    | 47    | 15    | 96    | 19    |
| Lead (aqua regia extractable)     | mg/kg | 1   | MCERTS | 12    | 43    | 14    | 55    | 17    |
| Mercury (aqua regia extractable)  | mg/kg | 0.3 | MCERTS | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 |
| Nickel (aqua regia extractable)   | mg/kg | 1   | MCERTS | 22    | 13    | 12    | 16    | 9     |
| Selenium (aqua regia extractable) | mg/kg | 1   | MCERTS | < 1.0 | < 1.0 | < 1.0 | < 1.0 | < 1.0 |
| Zinc (aqua regia extractable)     | mg/kg | 1   | MCERTS | 49    | 160   | 39    | 250   | 41    |

#### Petroleum Hydrocarbons

|                                                          |       |      |        |   |   |         |   |   |
|----------------------------------------------------------|-------|------|--------|---|---|---------|---|---|
| TPHCWG - Aliphatic >EC5 - EC6 <sub>HS_ID_AL</sub>        | mg/kg | 0.01 | MCERTS | - | - | < 0.010 | - | - |
| TPHCWG - Aliphatic >EC6 - EC8 <sub>HS_ID_AL</sub>        | mg/kg | 0.01 | MCERTS | - | - | < 0.010 | - | - |
| TPHCWG - Aliphatic >EC8 - EC10 <sub>HS_ID_AL</sub>       | mg/kg | 0.01 | MCERTS | - | - | < 0.010 | - | - |
| TPHCWG - Aliphatic >EC10 - EC12 <sub>EH CU_ID_AL</sub>   | mg/kg | 1    | MCERTS | - | - | < 1.0   | - | - |
| TPHCWG - Aliphatic >EC12 - EC16 <sub>EH CU_ID_AL</sub>   | mg/kg | 2    | MCERTS | - | - | < 2.0   | - | - |
| TPHCWG - Aliphatic >EC16 - EC21 <sub>EH CU_ID_AL</sub>   | mg/kg | 8    | MCERTS | - | - | < 8.0   | - | - |
| TPHCWG - Aliphatic >EC21 - EC35 <sub>EH CU_ID_AL</sub>   | mg/kg | 8    | MCERTS | - | - | < 8.0   | - | - |
| TPHCWG - Aliphatic >EC5 - EC35 <sub>EH CU+HS_ID_AL</sub> | mg/kg | 10   | NONE   | - | - | < 10    | - | - |

|                                                         |       |      |        |   |   |         |   |   |
|---------------------------------------------------------|-------|------|--------|---|---|---------|---|---|
| TPHCWG - Aromatic >EC5 - EC7 <sub>HS_ID_AR</sub>        | mg/kg | 0.01 | MCERTS | - | - | < 0.010 | - | - |
| TPHCWG - Aromatic >EC7 - EC8 <sub>HS_ID_AR</sub>        | mg/kg | 0.01 | MCERTS | - | - | < 0.010 | - | - |
| TPHCWG - Aromatic >EC8 - EC10 <sub>HS_ID_AR</sub>       | mg/kg | 0.02 | MCERTS | - | - | < 0.020 | - | - |
| TPHCWG - Aromatic >EC10 - EC12 <sub>EH CU_ID_AR</sub>   | mg/kg | 1    | MCERTS | - | - | < 1.0   | - | - |
| TPHCWG - Aromatic >EC12 - EC16 <sub>EH CU_ID_AR</sub>   | mg/kg | 2    | MCERTS | - | - | < 2.0   | - | - |
| TPHCWG - Aromatic >EC16 - EC21 <sub>EH CU_ID_AR</sub>   | mg/kg | 10   | MCERTS | - | - | < 10    | - | - |
| TPHCWG - Aromatic >EC21 - EC35 <sub>EH CU_ID_AR</sub>   | mg/kg | 10   | MCERTS | - | - | < 10    | - | - |
| TPHCWG - Aromatic >EC5 - EC35 <sub>EH CU+HS_ID_AR</sub> | mg/kg | 10   | NONE   | - | - | < 10    | - | - |

#### VOCs

|                                    |       |   |        |   |   |       |   |   |
|------------------------------------|-------|---|--------|---|---|-------|---|---|
| MTBE (Methyl Tertiary Butyl Ether) | µg/kg | 5 | MCERTS | - | - | < 5.0 | - | - |
| Benzene                            | µg/kg | 5 | MCERTS | - | - | < 5.0 | - | - |
| Toluene                            | µg/kg | 5 | MCERTS | - | - | < 5.0 | - | - |
| Ethylbenzene                       | µg/kg | 5 | MCERTS | - | - | < 5.0 | - | - |
| p & m-Xylene                       | µg/kg | 8 | MCERTS | - | - | < 8.0 | - | - |
| o-Xylene                           | µg/kg | 5 | MCERTS | - | - | < 5.0 | - | - |

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Analytical Report Number: 25-042363

Project / Site name: Finchampstead - P11, P12, Neighbourhood Centre

| Lab Sample Number                       | 642693            | 642694                     | 642695                       | 642696        | 642697        |  |  |
|-----------------------------------------|-------------------|----------------------------|------------------------------|---------------|---------------|--|--|
| Sample Reference                        | TP3 - ES1 - TS/MG | TP3 - ES2 - NG             | HEAP 4 - ES1                 | HEAP 4 - ES2  | HEAP 4 - ES3  |  |  |
| Sample Number                           | None Supplied     | None Supplied              | None Supplied                | None Supplied | None Supplied |  |  |
| Water Matrix                            | N/A               | N/A                        | N/A                          | N/A           | N/A           |  |  |
| Depth (m)                               | 0.05              | 0.30                       | None Supplied                | None Supplied | None Supplied |  |  |
| Date Sampled                            | 06/08/2025        | 06/08/2025                 | 06/08/2025                   | 06/08/2025    | 06/08/2025    |  |  |
| Time Taken                              | None Supplied     | None Supplied              | None Supplied                | None Supplied | None Supplied |  |  |
| Analytical Parameter<br>(Soil Analysis) | Units             | Test Limit of<br>detection | Test Accreditation<br>Status |               |               |  |  |

|                               |    |      |      |       |       |       |       |      |
|-------------------------------|----|------|------|-------|-------|-------|-------|------|
| Stone Content                 | %  | 0.1  | NONE | < 0.1 | < 0.1 | < 0.1 | < 0.1 | 24.8 |
| Moisture Content              | %  | 0.01 | NONE | 5.7   | 12    | 10    | 7.7   | 6.3  |
| Total mass of sample received | kg | 0.1  | NONE | 0.7   | 0.7   | 0.7   | 0.7   | 0.7  |

#### Asbestos

|                                        |      |     |           |              |   |              |              |              |
|----------------------------------------|------|-----|-----------|--------------|---|--------------|--------------|--------------|
| Asbestos in Soil Detected/Not Detected | Type | N/A | ISO 17025 | Not-detected | - | Not-detected | Detected     | Not-detected |
| Asbestos Analyst ID                    | N/A  | N/A | N/A       | PKU          | - | PKU          | PKU          | PKU          |
| Analysis completed                     | N/A  | N/A | N/A       | 19/08/2025   | - | 19/08/2025   | 19/08/2025   | 19/08/2025   |
| Actinolite detected                    | Type | N/A | ISO 17025 | -            | - | -            | Not-detected | -            |
| Amosite detected                       | Type | N/A | ISO 17025 | -            | - | -            | Detected     | -            |
| Anthophyllite detected                 | Type | N/A | ISO 17025 | -            | - | -            | Not-detected | -            |
| Chrysotile detected                    | Type | N/A | ISO 17025 | -            | - | -            | Not-detected | -            |
| Crocidolite detected                   | Type | N/A | ISO 17025 | -            | - | -            | Not-detected | -            |
| Tremolite detected                     | Type | N/A | ISO 17025 | -            | - | -            | Not-detected | -            |

|                                     |   |       |           |   |   |   |   |   |
|-------------------------------------|---|-------|-----------|---|---|---|---|---|
| Asbestos % by hand picking/weighing | % | 0.001 | ISO 17025 | - | - | - | - | - |
|-------------------------------------|---|-------|-----------|---|---|---|---|---|

|                                                   |      |     |           |   |   |   |              |   |
|---------------------------------------------------|------|-----|-----------|---|---|---|--------------|---|
| Asbestos Containing Material Types Detected (ACM) | Type | N/A | ISO 17025 | - | - | - | Loose Fibres | - |
|---------------------------------------------------|------|-----|-----------|---|---|---|--------------|---|

#### General Inorganics

|                                                                         |          |         |        |       |        |       |       |       |
|-------------------------------------------------------------------------|----------|---------|--------|-------|--------|-------|-------|-------|
| pH (L099)                                                               | pH Units | N/A     | MCERTS | 7.6   | 8.2    | 8.7   | 10.2  | 8.2   |
| Total Sulphate as SO <sub>4</sub>                                       | %        | 0.005   | MCERTS | 0.061 | 0.023  | 0.404 | 1.06  | 0.097 |
| Water Soluble Sulphate as SO <sub>4</sub> 16hr extraction (2:1)         | mg/kg    | 2.5     | MCERTS | 210   | 20     | 2100  | 1700  | 360   |
| Water Soluble SO <sub>4</sub> 16hr extraction (2:1 Leachate Equivalent) | g/l      | 0.00125 | MCERTS | 0.106 | 0.0102 | 1.03  | 0.851 | 0.181 |
| Water Soluble SO <sub>4</sub> 16hr extraction (2:1 Leachate Equivalent) | mg/l     | 1.25    | MCERTS | 106   | 10.2   | 1030  | 851   | 181   |
| Total Sulphur                                                           | mg/kg    | 50      | MCERTS | 250   | 110    | 1500  | 3900  | 420   |
| Total Sulphur                                                           | %        | 0.005   | MCERTS | 0.025 | 0.011  | 0.148 | 0.393 | 0.042 |

#### Speciated PAHs

|                        |       |      |           |        |        |        |        |        |
|------------------------|-------|------|-----------|--------|--------|--------|--------|--------|
| Naphthalene            | mg/kg | 0.05 | MCERTS    | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
| Acenaphthylene         | mg/kg | 0.05 | MCERTS    | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
| Acenaphthene           | mg/kg | 0.05 | MCERTS    | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
| Fluorene               | mg/kg | 0.05 | MCERTS    | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
| Phenanthrene           | mg/kg | 0.05 | MCERTS    | < 0.05 | < 0.05 | 0.19   | 0.24   | 0.27   |
| Anthracene             | mg/kg | 0.05 | MCERTS    | < 0.05 | < 0.05 | 0.06   | 0.1    | 0.08   |
| Fluoranthene           | mg/kg | 0.05 | MCERTS    | < 0.05 | < 0.05 | 0.7    | 0.79   | 1.1    |
| Pyrene                 | mg/kg | 0.05 | MCERTS    | < 0.05 | < 0.05 | 0.68   | 0.83   | 1.1    |
| Benzo(a)anthracene     | mg/kg | 0.05 | MCERTS    | < 0.05 | < 0.05 | 0.41   | 0.45   | 0.78   |
| Chrysene               | mg/kg | 0.05 | MCERTS    | < 0.05 | < 0.05 | 0.45   | 0.51   | 0.87   |
| Benzo(b)fluoranthene   | mg/kg | 0.05 | ISO 17025 | < 0.05 | < 0.05 | 0.64   | 0.67   | 1.5    |
| Benzo(k)fluoranthene   | mg/kg | 0.05 | ISO 17025 | < 0.05 | < 0.05 | 0.21   | 0.34   | 0.65   |
| Benzo(a)pyrene         | mg/kg | 0.05 | MCERTS    | < 0.05 | < 0.05 | 0.55   | 0.64   | 1.4    |
| Indeno(1,2,3-cd)pyrene | mg/kg | 0.05 | MCERTS    | < 0.05 | < 0.05 | 0.28   | 0.32   | 0.84   |
| Dibenz(a,h)anthracene  | mg/kg | 0.05 | MCERTS    | < 0.05 | < 0.05 | 0.06   | < 0.05 | 0.17   |
| Benzo(ghi)perylene     | mg/kg | 0.05 | MCERTS    | < 0.05 | < 0.05 | 0.29   | 0.34   | 0.93   |

Analytical Report Number: 25-042363

Project / Site name: Finchampstead - P11, P12, Neighbourhood Centre

| Lab Sample Number                       | 642693            | 642694                     | 642695                       | 642696        | 642697        |
|-----------------------------------------|-------------------|----------------------------|------------------------------|---------------|---------------|
| Sample Reference                        | TP3 - ES1 - TS/MG | TP3 - ES2 - NG             | HEAP 4 - ES1                 | HEAP 4 - ES2  | HEAP 4 - ES3  |
| Sample Number                           | None Supplied     | None Supplied              | None Supplied                | None Supplied | None Supplied |
| Water Matrix                            | N/A               | N/A                        | N/A                          | N/A           | N/A           |
| Depth (m)                               | 0.05              | 0.30                       | None Supplied                | None Supplied | None Supplied |
| Date Sampled                            | 06/08/2025        | 06/08/2025                 | 06/08/2025                   | 06/08/2025    | 06/08/2025    |
| Time Taken                              | None Supplied     | None Supplied              | None Supplied                | None Supplied | None Supplied |
| Analytical Parameter<br>(Soil Analysis) | Units             | Test Limit of<br>detection | Test Accreditation<br>Status |               |               |

#### Total PAH

| Speciated Total EPA-16 PAHs | mg/kg | 0.8 | ISO 17025 | < 0.80 | < 0.80 | 4.52 | 5.22 | 9.61 |
|-----------------------------|-------|-----|-----------|--------|--------|------|------|------|
|                             |       |     |           |        |        |      |      |      |

#### Heavy Metals / Metalloids

|                                   |       |     |        |            |       |       |       |       |
|-----------------------------------|-------|-----|--------|------------|-------|-------|-------|-------|
| Arsenic (aqua regia extractable)  | mg/kg | 1   | MCERTS | 5.3        | 11    | 7.7   | 10    | 8.6   |
| Cadmium (aqua regia extractable)  | mg/kg | 0.2 | MCERTS | < 0.2      | < 0.2 | 0.2   | 0.6   | 0.2   |
| Chromium (hexavalent)             | mg/kg | 1.8 | MCERTS | U/S *U/S g | < 1.8 | < 1.8 | < 1.8 | < 1.8 |
| Chromium (VI) by IC               | mg/kg | 1.8 | NONE   | < 1.80     | -     | -     | -     | -     |
| Chromium (III) by IC              | mg/kg | 1   | NONE   | 18         | -     | -     | -     | -     |
| Chromium (aqua regia extractable) | mg/kg | 1   | MCERTS | 18         | 37    | 15    | 22    | 18    |
| Copper (aqua regia extractable)   | mg/kg | 1   | MCERTS | 18         | 11    | 54    | 41    | 22    |
| Lead (aqua regia extractable)     | mg/kg | 1   | MCERTS | 17         | 9.5   | 23    | 40    | 20    |
| Mercury (aqua regia extractable)  | mg/kg | 0.3 | MCERTS | < 0.3      | < 0.3 | < 0.3 | < 0.3 | < 0.3 |
| Nickel (aqua regia extractable)   | mg/kg | 1   | MCERTS | 6.1        | 9.5   | 9.2   | 13    | 9.7   |
| Selenium (aqua regia extractable) | mg/kg | 1   | MCERTS | < 1.0      | < 1.0 | < 1.0 | < 1.0 | < 1.0 |
| Zinc (aqua regia extractable)     | mg/kg | 1   | MCERTS | 42         | 44    | 75    | 140   | 79    |

#### Petroleum Hydrocarbons

|                                               |       |      |        |   |   |   |   |   |
|-----------------------------------------------|-------|------|--------|---|---|---|---|---|
| TPHCWG - Aliphatic >EC5 - EC6 HS_ID_AL        | mg/kg | 0.01 | MCERTS | - | - | - | - | - |
| TPHCWG - Aliphatic >EC6 - EC8 HS_ID_AL        | mg/kg | 0.01 | MCERTS | - | - | - | - | - |
| TPHCWG - Aliphatic >EC8 - EC10 HS_ID_AL       | mg/kg | 0.01 | MCERTS | - | - | - | - | - |
| TPHCWG - Aliphatic >EC10 - EC12 EH CU_ID_AL   | mg/kg | 1    | MCERTS | - | - | - | - | - |
| TPHCWG - Aliphatic >EC12 - EC16 EH CU_ID_AL   | mg/kg | 2    | MCERTS | - | - | - | - | - |
| TPHCWG - Aliphatic >EC16 - EC21 EH CU_ID_AL   | mg/kg | 8    | MCERTS | - | - | - | - | - |
| TPHCWG - Aliphatic >EC21 - EC35 EH CU_ID_AL   | mg/kg | 8    | MCERTS | - | - | - | - | - |
| TPHCWG - Aliphatic >EC5 - EC35 EH CU_H5_ID_AL | mg/kg | 10   | NONE   | - | - | - | - | - |

|                                              |       |      |        |   |   |   |   |   |
|----------------------------------------------|-------|------|--------|---|---|---|---|---|
| TPHCWG - Aromatic >EC5 - EC7 HS_ID_AR        | mg/kg | 0.01 | MCERTS | - | - | - | - | - |
| TPHCWG - Aromatic >EC7 - EC8 HS_ID_AR        | mg/kg | 0.01 | MCERTS | - | - | - | - | - |
| TPHCWG - Aromatic >EC8 - EC10 HS_ID_AR       | mg/kg | 0.02 | MCERTS | - | - | - | - | - |
| TPHCWG - Aromatic >EC10 - EC12 EH CU_ID_AR   | mg/kg | 1    | MCERTS | - | - | - | - | - |
| TPHCWG - Aromatic >EC12 - EC16 EH CU_ID_AR   | mg/kg | 2    | MCERTS | - | - | - | - | - |
| TPHCWG - Aromatic >EC16 - EC21 EH CU_ID_AR   | mg/kg | 10   | MCERTS | - | - | - | - | - |
| TPHCWG - Aromatic >EC21 - EC35 EH CU_ID_AR   | mg/kg | 10   | MCERTS | - | - | - | - | - |
| TPHCWG - Aromatic >EC5 - EC35 EH CU_H5_ID_AR | mg/kg | 10   | NONE   | - | - | - | - | - |

#### VOCs

|                                    |       |   |        |   |   |   |   |   |
|------------------------------------|-------|---|--------|---|---|---|---|---|
| MTBE (Methyl Tertiary Butyl Ether) | µg/kg | 5 | MCERTS | - | - | - | - | - |
| Benzene                            | µg/kg | 5 | MCERTS | - | - | - | - | - |
| Toluene                            | µg/kg | 5 | MCERTS | - | - | - | - | - |
| Ethylbenzene                       | µg/kg | 5 | MCERTS | - | - | - | - | - |
| p & m-Xylene                       | µg/kg | 8 | MCERTS | - | - | - | - | - |
| o-Xylene                           | µg/kg | 5 | MCERTS | - | - | - | - | - |

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Analytical Report Number: 25-042363

Project / Site name: Finchampstead - P11, P12, Neighbourhood Centre

| Lab Sample Number                       | 642698        | 642699                     | 642700                       | 642701        | 642702        |
|-----------------------------------------|---------------|----------------------------|------------------------------|---------------|---------------|
| Sample Reference                        | HEAP 4 - ES4  | HEAP 4 - ES5               | HEAP 4 - ES6                 | HEAP 4 - ES7  | HEAP 4 - ES8  |
| Sample Number                           | None Supplied | None Supplied              | None Supplied                | None Supplied | None Supplied |
| Water Matrix                            | N/A           | N/A                        | N/A                          | N/A           | N/A           |
| Depth (m)                               | None Supplied | None Supplied              | None Supplied                | None Supplied | None Supplied |
| Date Sampled                            | 06/08/2025    | 06/08/2025                 | 06/08/2025                   | 06/08/2025    | 06/08/2025    |
| Time Taken                              | None Supplied | None Supplied              | None Supplied                | None Supplied | None Supplied |
| Analytical Parameter<br>(Soil Analysis) | Units         | Test Limit of<br>detection | Test Accreditation<br>Status |               |               |

|                               |    |      |      |       |       |       |       |      |
|-------------------------------|----|------|------|-------|-------|-------|-------|------|
| Stone Content                 | %  | 0.1  | NONE | < 0.1 | < 0.1 | < 0.1 | < 0.1 | 13.3 |
| Moisture Content              | %  | 0.01 | NONE | 9     | 15    | 7.6   | 13    | 7.7  |
| Total mass of sample received | kg | 0.1  | NONE | 0.7   | 0.7   | 0.7   | 0.7   | 0.7  |

#### Asbestos

|                                        |      |     |           |              |              |              |              |              |
|----------------------------------------|------|-----|-----------|--------------|--------------|--------------|--------------|--------------|
| Asbestos in Soil Detected/Not Detected | Type | N/A | ISO 17025 | Not-detected | Not-detected | Not-detected | Detected     | Not-detected |
| Asbestos Analyst ID                    | N/A  | N/A | N/A       | MBI          | MBI          | MBI          | MBI          | MBI          |
| Analysis completed                     | N/A  | N/A | N/A       | 19/08/2025   | 19/08/2025   | 19/08/2025   | 19/08/2025   | 19/08/2025   |
| Actinolite detected                    | Type | N/A | ISO 17025 | -            | -            | -            | Not-detected | -            |
| Amosite detected                       | Type | N/A | ISO 17025 | -            | -            | -            | Not-detected | -            |
| Anthophyllite detected                 | Type | N/A | ISO 17025 | -            | -            | -            | Not-detected | -            |
| Chrysotile detected                    | Type | N/A | ISO 17025 | -            | -            | -            | Detected     | -            |
| Crocidolite detected                   | Type | N/A | ISO 17025 | -            | -            | -            | Not-detected | -            |
| Tremolite detected                     | Type | N/A | ISO 17025 | -            | -            | -            | Not-detected | -            |

|                                     |   |       |           |   |   |   |   |   |
|-------------------------------------|---|-------|-----------|---|---|---|---|---|
| Asbestos % by hand picking/weighing | % | 0.001 | ISO 17025 | - | - | - | - | - |
|-------------------------------------|---|-------|-----------|---|---|---|---|---|

|                                                   |      |     |           |   |   |   |              |   |
|---------------------------------------------------|------|-----|-----------|---|---|---|--------------|---|
| Asbestos Containing Material Types Detected (ACM) | Type | N/A | ISO 17025 | - | - | - | Loose Fibres | - |
|---------------------------------------------------|------|-----|-----------|---|---|---|--------------|---|

#### General Inorganics

|                                                                         |          |         |        |       |       |       |       |       |
|-------------------------------------------------------------------------|----------|---------|--------|-------|-------|-------|-------|-------|
| pH (L099)                                                               | pH Units | N/A     | MCERTS | 8     | 7.8   | 9.6   | 8.7   | 8     |
| Total Sulphate as SO <sub>4</sub>                                       | %        | 0.005   | MCERTS | 0.195 | 0.158 | 0.323 | 0.101 | 0.192 |
| Water Soluble Sulphate as SO <sub>4</sub> 16hr extraction (2:1)         | mg/kg    | 2.5     | MCERTS | 1100  | 810   | 1100  | 510   | 1200  |
| Water Soluble SO <sub>4</sub> 16hr extraction (2:1 Leachate Equivalent) | g/l      | 0.00125 | MCERTS | 0.545 | 0.406 | 0.543 | 0.254 | 0.596 |
| Water Soluble SO <sub>4</sub> 16hr extraction (2:1 Leachate Equivalent) | mg/l     | 1.25    | MCERTS | 545   | 406   | 543   | 254   | 596   |
| Total Sulphur                                                           | mg/kg    | 50      | MCERTS | 640   | 720   | 1300  | 490   | 840   |
| Total Sulphur                                                           | %        | 0.005   | MCERTS | 0.064 | 0.072 | 0.127 | 0.049 | 0.084 |

#### Speciated PAHs

|                        |       |      |           |        |        |        |        |        |
|------------------------|-------|------|-----------|--------|--------|--------|--------|--------|
| Naphthalene            | mg/kg | 0.05 | MCERTS    | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
| Acenaphthylene         | mg/kg | 0.05 | MCERTS    | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
| Acenaphthene           | mg/kg | 0.05 | MCERTS    | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
| Fluorene               | mg/kg | 0.05 | MCERTS    | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
| Phenanthrene           | mg/kg | 0.05 | MCERTS    | 0.23   | 0.1    | 0.18   | 0.42   | 0.13   |
| Anthracene             | mg/kg | 0.05 | MCERTS    | 0.05   | < 0.05 | 0.07   | 0.24   | < 0.05 |
| Fluoranthene           | mg/kg | 0.05 | MCERTS    | 0.59   | 0.33   | 0.98   | 2.1    | 0.43   |
| Pyrene                 | mg/kg | 0.05 | MCERTS    | 0.54   | 0.31   | 0.92   | 1.8    | 0.39   |
| Benzo(a)anthracene     | mg/kg | 0.05 | MCERTS    | 0.34   | 0.19   | 0.6    | 0.87   | 0.23   |
| Chrysene               | mg/kg | 0.05 | MCERTS    | 0.32   | 0.22   | 0.63   | 0.81   | 0.28   |
| Benzo(b)fluoranthene   | mg/kg | 0.05 | ISO 17025 | 0.45   | 0.3    | 0.91   | 0.93   | 0.42   |
| Benzo(k)fluoranthene   | mg/kg | 0.05 | ISO 17025 | 0.24   | 0.16   | 0.42   | 0.45   | 0.2    |
| Benzo(a)pyrene         | mg/kg | 0.05 | MCERTS    | 0.43   | 0.25   | 0.82   | 0.87   | 0.35   |
| Indeno(1,2,3-cd)pyrene | mg/kg | 0.05 | MCERTS    | 0.24   | 0.16   | 0.42   | 0.44   | 0.22   |
| Dibenz(a,h)anthracene  | mg/kg | 0.05 | MCERTS    | < 0.05 | < 0.05 | 0.09   | 0.08   | < 0.05 |
| Benzo(ghi)perylene     | mg/kg | 0.05 | MCERTS    | 0.25   | 0.18   | 0.45   | 0.45   | 0.26   |

Analytical Report Number: 25-042363

Project / Site name: Finchampstead - P11, P12, Neighbourhood Centre

| Lab Sample Number                       | 642698        | 642699                     | 642700                       | 642701        | 642702        |
|-----------------------------------------|---------------|----------------------------|------------------------------|---------------|---------------|
| Sample Reference                        | HEAP 4 - ES4  | HEAP 4 - ES5               | HEAP 4 - ES6                 | HEAP 4 - ES7  | HEAP 4 - ES8  |
| Sample Number                           | None Supplied | None Supplied              | None Supplied                | None Supplied | None Supplied |
| Water Matrix                            | N/A           | N/A                        | N/A                          | N/A           | N/A           |
| Depth (m)                               | None Supplied | None Supplied              | None Supplied                | None Supplied | None Supplied |
| Date Sampled                            | 06/08/2025    | 06/08/2025                 | 06/08/2025                   | 06/08/2025    | 06/08/2025    |
| Time Taken                              | None Supplied | None Supplied              | None Supplied                | None Supplied | None Supplied |
| Analytical Parameter<br>(Soil Analysis) | Units         | Test Limit of<br>detection | Test Accreditation<br>Status |               |               |

#### Total PAH

| Speciated Total EPA-16 PAHs | mg/kg | 0.8 | ISO 17025 | 3.68 | 2.19 | 6.5 | 9.48 | 2.9 |
|-----------------------------|-------|-----|-----------|------|------|-----|------|-----|
|                             |       |     |           |      |      |     |      |     |

#### Heavy Metals / Metalloids

|                                   |       |     |        |       |       |       |       |       |
|-----------------------------------|-------|-----|--------|-------|-------|-------|-------|-------|
| Arsenic (aqua regia extractable)  | mg/kg | 1   | MCERTS | 9.1   | 9.3   | 6.5   | 8.9   | 10    |
| Cadmium (aqua regia extractable)  | mg/kg | 0.2 | MCERTS | < 0.2 | < 0.2 | 0.2   | < 0.2 | < 0.2 |
| Chromium (hexavalent)             | mg/kg | 1.8 | MCERTS | < 1.8 | < 1.8 | < 1.8 | < 1.8 | < 1.8 |
| Chromium (VI) by IC               | mg/kg | 1.8 | NONE   | -     | -     | -     | -     | -     |
| Chromium (III) by IC              | mg/kg | 1   | NONE   | -     | -     | -     | -     | -     |
| Chromium (aqua regia extractable) | mg/kg | 1   | MCERTS | 27    | 40    | 21    | 42    | 32    |
| Copper (aqua regia extractable)   | mg/kg | 1   | MCERTS | 36    | 30    | 480   | 19    | 31    |
| Lead (aqua regia extractable)     | mg/kg | 1   | MCERTS | 19    | 24    | 24    | 19    | 26    |
| Mercury (aqua regia extractable)  | mg/kg | 0.3 | MCERTS | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 |
| Nickel (aqua regia extractable)   | mg/kg | 1   | MCERTS | 12    | 17    | 12    | 16    | 19    |
| Selenium (aqua regia extractable) | mg/kg | 1   | MCERTS | < 1.0 | < 1.0 | < 1.0 | < 1.0 | < 1.0 |
| Zinc (aqua regia extractable)     | mg/kg | 1   | MCERTS | 64    | 65    | 98    | 58    | 84    |

#### Petroleum Hydrocarbons

|                                                          |       |      |        |   |   |   |   |   |
|----------------------------------------------------------|-------|------|--------|---|---|---|---|---|
| TPHCWG - Aliphatic >EC5 - EC6 <sub>HS_ID_AL</sub>        | mg/kg | 0.01 | MCERTS | - | - | - | - | - |
| TPHCWG - Aliphatic >EC6 - EC8 <sub>HS_ID_AL</sub>        | mg/kg | 0.01 | MCERTS | - | - | - | - | - |
| TPHCWG - Aliphatic >EC8 - EC10 <sub>HS_ID_AL</sub>       | mg/kg | 0.01 | MCERTS | - | - | - | - | - |
| TPHCWG - Aliphatic >EC10 - EC12 <sub>EH CU_ID_AL</sub>   | mg/kg | 1    | MCERTS | - | - | - | - | - |
| TPHCWG - Aliphatic >EC12 - EC16 <sub>EH CU_ID_AL</sub>   | mg/kg | 2    | MCERTS | - | - | - | - | - |
| TPHCWG - Aliphatic >EC16 - EC21 <sub>EH CU_ID_AL</sub>   | mg/kg | 8    | MCERTS | - | - | - | - | - |
| TPHCWG - Aliphatic >EC21 - EC35 <sub>EH CU_ID_AL</sub>   | mg/kg | 8    | MCERTS | - | - | - | - | - |
| TPHCWG - Aliphatic >EC5 - EC35 <sub>EH CU HS_ID_AL</sub> | mg/kg | 10   | NONE   | - | - | - | - | - |

|                                                         |       |      |        |   |   |   |   |   |
|---------------------------------------------------------|-------|------|--------|---|---|---|---|---|
| TPHCWG - Aromatic >EC5 - EC7 <sub>HS_ID_AR</sub>        | mg/kg | 0.01 | MCERTS | - | - | - | - | - |
| TPHCWG - Aromatic >EC7 - EC8 <sub>HS_ID_AR</sub>        | mg/kg | 0.01 | MCERTS | - | - | - | - | - |
| TPHCWG - Aromatic >EC8 - EC10 <sub>HS_ID_AR</sub>       | mg/kg | 0.02 | MCERTS | - | - | - | - | - |
| TPHCWG - Aromatic >EC10 - EC12 <sub>EH CU_ID_AR</sub>   | mg/kg | 1    | MCERTS | - | - | - | - | - |
| TPHCWG - Aromatic >EC12 - EC16 <sub>EH CU_ID_AR</sub>   | mg/kg | 2    | MCERTS | - | - | - | - | - |
| TPHCWG - Aromatic >EC16 - EC21 <sub>EH CU_ID_AR</sub>   | mg/kg | 10   | MCERTS | - | - | - | - | - |
| TPHCWG - Aromatic >EC21 - EC21 <sub>EH CU_ID_AR</sub>   | mg/kg | 10   | MCERTS | - | - | - | - | - |
| TPHCWG - Aromatic >EC5 - EC35 <sub>EH CU HS_ID_AR</sub> | mg/kg | 10   | NONE   | - | - | - | - | - |

#### VOCs

|                                    |       |   |        |   |   |   |   |   |
|------------------------------------|-------|---|--------|---|---|---|---|---|
| MTBE (Methyl Tertiary Butyl Ether) | µg/kg | 5 | MCERTS | - | - | - | - | - |
| Benzene                            | µg/kg | 5 | MCERTS | - | - | - | - | - |
| Toluene                            | µg/kg | 5 | MCERTS | - | - | - | - | - |
| Ethylbenzene                       | µg/kg | 5 | MCERTS | - | - | - | - | - |
| p & m-Xylene                       | µg/kg | 8 | MCERTS | - | - | - | - | - |
| o-Xylene                           | µg/kg | 5 | MCERTS | - | - | - | - | - |

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Analytical Report Number: 25-042363

Project / Site name: Finchampstead - P11, P12, Neighbourhood Centre

|                                                 |               |                                    |                                      |  |  |
|-------------------------------------------------|---------------|------------------------------------|--------------------------------------|--|--|
| Lab Sample Number                               | 642703        | 642704                             |                                      |  |  |
| Sample Reference                                | HEAP 4 - ES9  | HEAP 4 - ES10                      |                                      |  |  |
| Sample Number                                   | None Supplied | None Supplied                      |                                      |  |  |
| Water Matrix                                    | N/A           | N/A                                |                                      |  |  |
| Depth (m)                                       | None Supplied | None Supplied                      |                                      |  |  |
| Date Sampled                                    | 06/08/2025    | 06/08/2025                         |                                      |  |  |
| Time Taken                                      | None Supplied | None Supplied                      |                                      |  |  |
| <b>Analytical Parameter<br/>(Soil Analysis)</b> | <b>Units</b>  | <b>Test Limit of<br/>detection</b> | <b>Test Accreditation<br/>Status</b> |  |  |

|                               |    |      |      |       |      |
|-------------------------------|----|------|------|-------|------|
| Stone Content                 | %  | 0.1  | NONE | < 0.1 | 20.6 |
| Moisture Content              | %  | 0.01 | NONE | 15    | 7.2  |
| Total mass of sample received | kg | 0.1  | NONE | 0.7   | 0.7  |

#### Asbestos

|                                        |      |       |           |              |              |
|----------------------------------------|------|-------|-----------|--------------|--------------|
| Asbestos in Soil Detected/Not Detected | Type | N/A   | ISO 17025 | Not-detected | Not-detected |
| Asbestos Analyst ID                    | N/A  | N/A   | N/A       | MBI          | MBI          |
| Analysis completed                     | N/A  | N/A   | N/A       | 19/08/2025   | 19/08/2025   |
| Actinolite detected                    | Type | N/A   | ISO 17025 | -            | -            |
| Amosite detected                       | Type | N/A   | ISO 17025 | -            | -            |
| Anthophyllite detected                 | Type | N/A   | ISO 17025 | -            | -            |
| Chrysotile detected                    | Type | N/A   | ISO 17025 | -            | -            |
| Crocidolite detected                   | Type | N/A   | ISO 17025 | -            | -            |
| Tremolite detected                     | Type | N/A   | ISO 17025 | -            | -            |
| Asbestos % by hand picking/weighing    | %    | 0.001 | ISO 17025 | -            | -            |

|                                                   |      |     |           |   |   |
|---------------------------------------------------|------|-----|-----------|---|---|
| Asbestos Containing Material Types Detected (ACM) | Type | N/A | ISO 17025 | - | - |
|---------------------------------------------------|------|-----|-----------|---|---|

#### General Inorganics

|                                                                         |          |         |        |       |       |
|-------------------------------------------------------------------------|----------|---------|--------|-------|-------|
| pH (L099)                                                               | pH Units | N/A     | MCERTS | 8.2   | 10.3  |
| Total Sulphate as SO <sub>4</sub>                                       | %        | 0.005   | MCERTS | 0.096 | 0.41  |
| Water Soluble Sulphate as SO <sub>4</sub> 16hr extraction (2:1)         | mg/kg    | 2.5     | MCERTS | 390   | 1400  |
| Water Soluble SO <sub>4</sub> 16hr extraction (2:1 Leachate Equivalent) | g/l      | 0.00125 | MCERTS | 0.197 | 0.709 |
| Water Soluble SO <sub>4</sub> 16hr extraction (2:1 Leachate Equivalent) | mg/l     | 1.25    | MCERTS | 197   | 709   |
| Total Sulphur                                                           | mg/kg    | 50      | MCERTS | 620   | 1900  |
| Total Sulphur                                                           | %        | 0.005   | MCERTS | 0.062 | 0.187 |

#### Speciated PAHs

|                        |       |      |           |        |        |
|------------------------|-------|------|-----------|--------|--------|
| Naphthalene            | mg/kg | 0.05 | MCERTS    | < 0.05 | < 0.05 |
| Acenaphthylene         | mg/kg | 0.05 | MCERTS    | < 0.05 | < 0.05 |
| Acenaphthene           | mg/kg | 0.05 | MCERTS    | 0.08   | < 0.05 |
| Fluorene               | mg/kg | 0.05 | MCERTS    | 0.09   | < 0.05 |
| Phenanthrene           | mg/kg | 0.05 | MCERTS    | 1.5    | 0.5    |
| Anthracene             | mg/kg | 0.05 | MCERTS    | 0.46   | 0.17   |
| Fluoranthene           | mg/kg | 0.05 | MCERTS    | 4.2    | 1.5    |
| Pyrene                 | mg/kg | 0.05 | MCERTS    | 3.4    | 1.4    |
| Benzo(a)anthracene     | mg/kg | 0.05 | MCERTS    | 1.7    | 0.83   |
| Chrysene               | mg/kg | 0.05 | MCERTS    | 1.8    | 0.87   |
| Benzo(b)fluoranthene   | mg/kg | 0.05 | ISO 17025 | 2.5    | 1.2    |
| Benzo(k)fluoranthene   | mg/kg | 0.05 | ISO 17025 | 1.2    | 0.6    |
| Benzo(a)pyrene         | mg/kg | 0.05 | MCERTS    | 2.3    | 1.1    |
| Indeno(1,2,3-cd)pyrene | mg/kg | 0.05 | MCERTS    | 1.4    | 0.63   |
| Dibenz(a,h)anthracene  | mg/kg | 0.05 | MCERTS    | 0.24   | 0.14   |
| Benzo(ghi)perylene     | mg/kg | 0.05 | MCERTS    | 1.5    | 0.69   |

Analytical Report Number: 25-042363

Project / Site name: Finchampstead - P11, P12, Neighbourhood Centre

|                                         |               |                            |                              |  |  |
|-----------------------------------------|---------------|----------------------------|------------------------------|--|--|
| Lab Sample Number                       | 642703        | 642704                     |                              |  |  |
| Sample Reference                        | HEAP 4 - ES9  | HEAP 4 - ES10              |                              |  |  |
| Sample Number                           | None Supplied | None Supplied              |                              |  |  |
| Water Matrix                            | N/A           | N/A                        |                              |  |  |
| Depth (m)                               | None Supplied | None Supplied              |                              |  |  |
| Date Sampled                            | 06/08/2025    | 06/08/2025                 |                              |  |  |
| Time Taken                              | None Supplied | None Supplied              |                              |  |  |
| Analytical Parameter<br>(Soil Analysis) | Units         | Test Limit of<br>detection | Test Accreditation<br>Status |  |  |

#### Total PAH

|                             |       |     |           |      |      |
|-----------------------------|-------|-----|-----------|------|------|
| Speciated Total EPA-16 PAHs | mg/kg | 0.8 | ISO 17025 | 22.3 | 9.72 |
|-----------------------------|-------|-----|-----------|------|------|

#### Heavy Metals / Metalloids

|                                   |       |     |        |       |       |
|-----------------------------------|-------|-----|--------|-------|-------|
| Arsenic (aqua regia extractable)  | mg/kg | 1   | MCERTS | 11    | 8.5   |
| Cadmium (aqua regia extractable)  | mg/kg | 0.2 | MCERTS | < 0.2 | 0.3   |
| Chromium (hexavalent)             | mg/kg | 1.8 | MCERTS | < 1.8 | < 1.8 |
| Chromium (VI) by IC               | mg/kg | 1.8 | NONE   | -     | -     |
| Chromium (III) by IC              | mg/kg | 1   | NONE   | -     | -     |
| Chromium (aqua regia extractable) | mg/kg | 1   | MCERTS | 90    | 19    |
| Copper (aqua regia extractable)   | mg/kg | 1   | MCERTS | 310   | 44    |
| Lead (aqua regia extractable)     | mg/kg | 1   | MCERTS | 26    | 33    |
| Mercury (aqua regia extractable)  | mg/kg | 0.3 | MCERTS | < 0.3 | < 0.3 |
| Nickel (aqua regia extractable)   | mg/kg | 1   | MCERTS | 19    | 11    |
| Selenium (aqua regia extractable) | mg/kg | 1   | MCERTS | < 1.0 | < 1.0 |
| Zinc (aqua regia extractable)     | mg/kg | 1   | MCERTS | 120   | 100   |

#### Petroleum Hydrocarbons

|                                                          |       |      |        |   |   |
|----------------------------------------------------------|-------|------|--------|---|---|
| TPHCWG - Aliphatic >EC5 - EC6 <sub>HS_ID_AL</sub>        | mg/kg | 0.01 | MCERTS | - | - |
| TPHCWG - Aliphatic >EC6 - EC8 <sub>HS_ID_AL</sub>        | mg/kg | 0.01 | MCERTS | - | - |
| TPHCWG - Aliphatic >EC8 - EC10 <sub>HS_ID_AL</sub>       | mg/kg | 0.01 | MCERTS | - | - |
| TPHCWG - Aliphatic >EC10 - EC12 <sub>EH CU_ID_AL</sub>   | mg/kg | 1    | MCERTS | - | - |
| TPHCWG - Aliphatic >EC12 - EC16 <sub>EH CU_ID_AL</sub>   | mg/kg | 2    | MCERTS | - | - |
| TPHCWG - Aliphatic >EC16 - EC21 <sub>EH CU_ID_AL</sub>   | mg/kg | 8    | MCERTS | - | - |
| TPHCWG - Aliphatic >EC21 - EC35 <sub>EH CU_ID_AL</sub>   | mg/kg | 8    | MCERTS | - | - |
| TPHCWG - Aliphatic >EC5 - EC35 <sub>EH CU+HS_ID_AL</sub> | mg/kg | 10   | NONE   | - | - |

|                                                         |       |      |        |   |   |
|---------------------------------------------------------|-------|------|--------|---|---|
| TPHCWG - Aromatic >EC5 - EC7 <sub>HS_ID_AR</sub>        | mg/kg | 0.01 | MCERTS | - | - |
| TPHCWG - Aromatic >EC7 - EC8 <sub>HS_ID_AR</sub>        | mg/kg | 0.01 | MCERTS | - | - |
| TPHCWG - Aromatic >EC8 - EC10 <sub>HS_ID_AR</sub>       | mg/kg | 0.02 | MCERTS | - | - |
| TPHCWG - Aromatic >EC10 - EC12 <sub>EH CU_ID_AR</sub>   | mg/kg | 1    | MCERTS | - | - |
| TPHCWG - Aromatic >EC12 - EC16 <sub>EH CU_ID_AR</sub>   | mg/kg | 2    | MCERTS | - | - |
| TPHCWG - Aromatic >EC16 - EC21 <sub>EH CU_ID_AR</sub>   | mg/kg | 10   | MCERTS | - | - |
| TPHCWG - Aromatic >EC21 - EC35 <sub>EH CU_ID_AR</sub>   | mg/kg | 10   | MCERTS | - | - |
| TPHCWG - Aromatic >EC5 - EC35 <sub>EH CU+HS_ID_AR</sub> | mg/kg | 10   | NONE   | - | - |

#### VOCs

|                                    |       |   |        |   |   |
|------------------------------------|-------|---|--------|---|---|
| MTBE (Methyl Tertiary Butyl Ether) | µg/kg | 5 | MCERTS | - | - |
| Benzene                            | µg/kg | 5 | MCERTS | - | - |
| Toluene                            | µg/kg | 5 | MCERTS | - | - |
| Ethylbenzene                       | µg/kg | 5 | MCERTS | - | - |
| o & m-Xylene                       | µg/kg | 8 | MCERTS | - | - |
| o-Xylene                           | µg/kg | 5 | MCERTS | - | - |

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected



Analytical Report Number: **25-042363**  
Project / Site name: **Finchampstead - P11, P12, Neighbo**  
Your Order No:

---

## Certificate of Analysis - Asbestos Quantification

---

### Methods:

#### Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

#### Quantitative Analysis

The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

| Sample Number | Sample ID        | Sample Depth (m) | Sample Weight (g) | Asbestos Containing Material Types Detected (ACM) | PLM Results       | Asbestos by hand picking/weighing (%) | Total % Asbestos in Sample | Analysis completed | Analyst ID |
|---------------|------------------|------------------|-------------------|---------------------------------------------------|-------------------|---------------------------------------|----------------------------|--------------------|------------|
| <b>642684</b> | TP101 - ES2 - MG | 0.32-            | 269               | Loose Fibres                                      | <b>Chrysotile</b> | < 0.001                               | <b>&lt; 0.001</b>          | 11/09/2025         | MBI        |
| <b>642691</b> | TP2 - ES1 - MG   | 0.10-            | 296               | Loose Fibres                                      | <b>Chrysotile</b> | < 0.001                               | <b>&lt; 0.001</b>          | 11/09/2025         | PKU        |

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

**Analytical Report Number : 25-042363**

**Project / Site name: Finchampstead - P11, P12, Neighbourhood Centre**

\* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

| Lab Sample Number | Sample Reference | Sample Number | Depth (m)     | Sample Description *                           |
|-------------------|------------------|---------------|---------------|------------------------------------------------|
| 642683            | TP101 - ES1 - MG | None Supplied | 0.15          | Brown loam and sand with gravel and vegetation |
| 642684            | TP101 - ES2 - MG | None Supplied | 0.32          | Brown loam and clay with gravel and vegetation |
| 642685            | TP102 - ES1 - MG | None Supplied | 0.2           | Brown loam and sand with gravel and vegetation |
| 642686            | TP102 - ES2 - NG | None Supplied | 0.6           | Brown clay                                     |
| 642687            | TP103 - ES2 - MG | None Supplied | 0.45          | Brown loam and clay with gravel and vegetation |
| 642688            | TP103 - ES3 - NG | None Supplied | 0.6           | Brown clay and sand                            |
| 642689            | TP1 - ES2 - MG   | None Supplied | 0.6           | Brown loam and sand with gravel and vegetation |
| 642690            | TP1 - ES3 - NG   | None Supplied | 0.8           | Brown clay and sand                            |
| 642691            | TP2 - ES1 - MG   | None Supplied | 0.1           | Brown loam and sand with gravel and chalk      |
| 642692            | TP2 - ES2 - NG   | None Supplied | 0.45          | Brown clay and loam with gravel and vegetation |
| 642693            | TP3 - ES1 - TS/M | None Supplied | 0.05          | Brown loam and clay with gravel and vegetation |
| 642694            | TP3 - ES2 - NG   | None Supplied | 0.3           | Brown clay and sand                            |
| 642695            | HEAP 4 - ES1     | None Supplied | None Supplied | Brown loam and sand with gravel and vegetation |
| 642696            | HEAP 4 - ES2     | None Supplied | None Supplied | Brown loam and sand with gravel and vegetation |
| 642697            | HEAP 4 - ES3     | None Supplied | None Supplied | Brown loam and sand with gravel and vegetation |
| 642698            | HEAP 4 - ES4     | None Supplied | None Supplied | Brown loam and sand with gravel and vegetation |
| 642699            | HEAP 4 - ES5     | None Supplied | None Supplied | Brown clay and sand with gravel and vegetation |
| 642700            | HEAP 4 - ES6     | None Supplied | None Supplied | Brown loam and sand with gravel and vegetation |
| 642701            | HEAP 4 - ES7     | None Supplied | None Supplied | Brown clay and sand with gravel and vegetation |
| 642702            | HEAP 4 - ES8     | None Supplied | None Supplied | Brown loam and clay with gravel and brick      |
| 642703            | HEAP 4 - ES9     | None Supplied | None Supplied | Brown clay and sand with gravel and vegetation |
| 642704            | HEAP 4 - ES10    | None Supplied | None Supplied | Brown loam and sand with gravel and vegetation |

Analytical Report Number : 25-042363

Project / Site name: Finchampstead - P11, P12, Neighbourhood Centre

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters Heating/Cooling (PrW) DI Process Water (DI PrW)

Final Sewage Effluent (FSE) Landfill Leachate (LL)

| Analytical Test Name                                                                       | Analytical Method Description                                                                                                          | Analytical Method Reference                                                         | Method number | Wet / Dry Analysis | Accreditation Status |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------|--------------------|----------------------|
| Asbestos identification in Soil                                                            | Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques                  | In-house method based on HSG 248, 2021                                              | A001B         | D                  | ISO 17025            |
| Moisture Content                                                                           | Moisture content, determined gravimetrically (up to 30°C)                                                                              | In-house method                                                                     | L019B         | W                  | NONE                 |
| Stones content of soil                                                                     | Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight             | In-house method based on British Standard Methods and MCERTS requirements.          | L019B         | D                  | NONE                 |
| Metals in soil by ICP-OES                                                                  | Determination of metals in soil by aqua-regia digestion followed by ICP-OES                                                            | In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil | L038B         | D                  | MCERTS               |
| Total sulphate (as SO4 in soil)                                                            | Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES                                                 | In-house method                                                                     | L038B         | D                  | MCERTS               |
| Sulphate, water soluble, in soil (16hr extraction)                                         | Sulphate, water soluble, in soil (16hr extraction)                                                                                     | In-house method                                                                     | L038B         | D                  | MCERTS               |
| Total Sulphur in soil                                                                      | Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES                    | In-house method                                                                     | L038B         | D                  | MCERTS               |
| Speciated PAHs and/or Semi-volatile organic compounds in soil                              | Determination of semi-volatile organic compounds (including PAH) in soil by extraction in dichloromethane and hexane followed by GC-MS | In-house method based on USEPA 8270                                                 | L064B         | D                  | MCERTS               |
| Hexavalent chromium in soil                                                                | Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry       | In-house method                                                                     | L080-PL       | W                  | MCERTS               |
| pH in soil (automated)                                                                     | Determination of pH in soil by addition of water followed by automated electrometric measurement                                       | In-house method                                                                     | L099-PL       | D                  | MCERTS               |
| Soil Descriptions                                                                          | Textural classification                                                                                                                | In-house method                                                                     | L019B         | W                  | NONE                 |
| Asbestos Quantification - Gravimetric                                                      | Asbestos quantification by gravimetric method - in house method based on references                                                    | HSE Report No: 83/1996, HSG 248 (2021), HSG 264 (2012) & SCA Blue Book (draft)      | A006B         | D                  | ISO 17025            |
| BTEX and/or Volatile organic compounds in soil                                             | Determination of volatile organic compounds in soil by headspace GC-MS                                                                 | In-house method based on USEPA 8260                                                 | L073B         | W                  | MCERTS               |
| Total petroleum hydrocarbons with carbon banding by GC-FID in soil                         | Determination of total petroleum hydrocarbons in soil by GC-FID with carbon banding aliphatic and aromatic                             | In-house method                                                                     | L076B         | D                  | MCERTS               |
| Total petroleum hydrocarbons with carbon banding by GC-FID/GC-MS HS in soil (Summed Bands) | Determination of total petroleum hydrocarbons in soil by GC-FID/GC-MS HS with carbon banding aliphatic and aromatic (Summed Bands)     | Calculation                                                                         | L076B/L088-PL | D/W                | NONE                 |



Analytical Report Number : 25-042363

Project / Site name: Finchampstead - P11, P12, Neighbourhood Centre

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters Heating/Cooling (PrW) DI Process Water (DI PrW)

Final Sewage Effluent (FSE) Landfill Leachate (LL)

| Analytical Test Name                                                 | Analytical Method Description                                                                                                | Analytical Method Reference    | Method number | Wet / Dry Analysis | Accreditation Status |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|--------------------|----------------------|
| Total petroleum hydrocarbons with carbon banding by HS-GC/MS in soil | Determination of total petroleum hydrocarbons in soil by HS-GC/MS with carbon banding aliphatic and aromatic                 | In-house method                | L088-PL       | W                  | MCERTS               |
| Cr(VI) in soils by Ion chromatography                                | Determination of hexavalent chromium in alkaline soil extract by use of ion chromatography with spectrophotometric detection | In-house method                | L130B         | W                  | NONE                 |
| Chromium III in soil                                                 | In-house method by calculation from total Cr and Cr VI                                                                       | In-house method by calculation | L080-PL/L130B | W                  | NONE                 |

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL' or 'B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Quality control parameter failure associated with individual result applies to calculated sum of individuals.

The result for sum should be interpreted with caution

\*U/S g- Unsuitable for analysis due to high colour intensity.

| Inorganic Compounds | Human Health – Public Open Space Near Housing (mg/kg) |
|---------------------|-------------------------------------------------------|
| Arsenic             | 79                                                    |
| Cadmium             | 120                                                   |
| Chromium (III)      | 1500                                                  |
| Chromium (VI)       | 7.7                                                   |
| Lead                | 270-760                                               |
| Mercury             | 16                                                    |
| Nickel              | 230                                                   |
| Selenium            | 1100                                                  |
| Copper              | 12000                                                 |
| Zinc                | 81000                                                 |

| Organic Compounds      | Human Health – Public Open Space Near Housing (mg/kg) |          |        |
|------------------------|-------------------------------------------------------|----------|--------|
|                        | 1% SOM                                                | 2.5% SOM | 6% SOM |
| Naphthalene            | 4900                                                  | 4900     | 4900   |
| Acenaphthene           | 15000                                                 | 15000    | 15000  |
| Acenaphthylene         | 15000                                                 | 15000    | 15000  |
| Fluorene               | 9900                                                  | 9900     | 9900   |
| Phenanthrene           | 3100                                                  | 3100     | 3100   |
| Anthracene             | 74000                                                 | 74000    | 74000  |
| Fluoranthene           | 3100                                                  | 3100     | 3100   |
| Pyrene                 | 7400                                                  | 7400     | 7400   |
| Benzo(a)anthracene     | 29                                                    | 29       | 29     |
| Chrysene               | 57                                                    | 57       | 57     |
| Benzo(b)fluoranthene   | 7.1                                                   | 7.2      | 7.2    |
| Benzo(k)fluoranthene   | 190                                                   | 190      | 190    |
| Benzo(a)pyrene         | 5.7                                                   | 5.7      | 5.7    |
| Dibenz(a,h)anthracene  | 0.57                                                  | 0.57     | 0.58   |
| Indeno(1,2,3-cd)pyrene | 82                                                    | 82       | 82     |
| Benzo(g,h,i)perylene   | 640                                                   | 640      | 640    |
| Benzene                | 72                                                    | 72       | 73     |
| Toluene                | 56000                                                 | 56000    | 56000  |
| Ethylbenzene           | 24000                                                 | 24000    | 25000  |
| o-Xylene               | 41000                                                 | 42000    | 43000  |
| m-Xylene               | 41000                                                 | 42000    | 43000  |
| p-Xylene               | 41000                                                 | 42000    | 43000  |

Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3153. All rights reserved.

|          |    |         |     |      |          |        |       |
|----------|----|---------|-----|------|----------|--------|-------|
| Prepared | LM | Checked | RAN | Date | 11.09.25 | Job No | 41623 |
|----------|----|---------|-----|------|----------|--------|-------|

|                                                                                                                                                           |                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  <p>St Andrew's House<br/>23 Kingfield Road<br/>Sheffield, S11 9AS</p> | <p><b>CALA HOMES THAMES</b><br/><b>NEIGHBOURHOOD CENTRE, HOGWOOD FARM (FINCHWOOD PARK DEVELOPMENT)</b></p> <p><b>ASSESSMENT CRITERIA – PUBLIC OPEN SPACE NEAR HOUSING</b></p> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Contaminant | Phytotoxicity    |                  |                  |            |
|-------------|------------------|------------------|------------------|------------|
|             | pH<br>5.0 to 5.5 | pH<br>5.5 to 6.0 | pH<br>6.0 to 7.0 | pH<br>>7.0 |
| Arsenic     | 50               |                  |                  |            |
| Cadmium     | 3                |                  |                  |            |
| Chromium    | 400              |                  |                  |            |
| Lead        | 300              |                  |                  |            |
| Mercury     | 1                |                  |                  |            |
| Nickel      | 50               | 60               | 75               | 110        |
| Copper      | 80               | 100              | 135              | 200        |
| Zinc        | 200              | 200              | 200              | 300        |

The assessment concentration for lead is the Category 4 Screening Level produced by Contaminated Land: Applications in Real Environments (CL:AIRE) and outlined in Appendix H of their report SP1010.

The others have been taken from Nathanail, C. P., McCaffrey, C., Gillett, A., Ogden, R., and Nathanail, J., 2015, 'The LQM/CIEH S4ULs for Human Health Risk Assessment', Land Quality Press, Nottingham. The metals/metalloids are based on a sandy loam soil and 6% soil organic matter. The assessment values are not intended to be applied to individual sample results where materials are similar, as the levels of contaminants will have a natural variability across the site. Instead, the modified mean value should be compared with the assessment concentration.

The assessment values for phytotoxicity are the levels at which plant growth is thought to be affected. They are taken from the maximum permissible and advisable concentrations in soil after application of soil sludge given in the 'The Code of Good Agricultural Practice for the Protection of Soil', MAFF, 1998.

The assessment of sulphate, water soluble sulphate, elemental sulphur and sulphide is to determine the aggressive nature of the ground with respect to concrete and consequently the results are compared with BRE Special Digest 1:2005 'Concrete in Aggressive Ground'.

Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3153. All rights reserved.

|          |    |         |     |      |          |        |       |
|----------|----|---------|-----|------|----------|--------|-------|
| Prepared | LM | Checked | RAN | Date | 11.09.25 | Job No | 41623 |
|----------|----|---------|-----|------|----------|--------|-------|

|                                                                                                                                                     |                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br>St Andrew's House<br>23 Kingfield Road<br>Sheffield, S11 9AS | <b>CALA HOMES THAMES</b><br><b>NEIGHBOURHOOD CENTRE, HOGWOOD FARM (FINCHWOOD PARK DEVELOPMENT)</b><br><b>ASSESSMENT CRITERIA – PUBLIC OPEN SPACE NEAR HOUSING</b> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| TPH Fraction        | Intended Land Use Public Open Space Near Housing (mg/kg) |                     |                     |
|---------------------|----------------------------------------------------------|---------------------|---------------------|
|                     | 1% SOM                                                   | 2.5% SOM            | 6% SOM              |
| Aliphatic EC 5-6    | 570000 (304) <sup>sol</sup>                              | 590000              | 600000              |
| Aliphatic EC >6-8   | 600000                                                   | 610000              | 620000              |
| Aliphatic EC >8-10  | 13000                                                    | 13000               | 13000               |
| Aliphatic EC >10-12 | 13000                                                    | 13000               | 13000               |
| Aliphatic EC >12-16 | 13000                                                    | 13000               | 13000               |
| Aliphatic EC >16-35 | 250000 <sup>f</sup>                                      | 250000 <sup>f</sup> | 250000 <sup>f</sup> |
| Aliphatic EC >35-44 | 250000 <sup>f</sup>                                      | 250000 <sup>f</sup> | 250000 <sup>f</sup> |
| Aromatic EC 5-7     | 56000                                                    | 56000               | 56000               |
| Aromatic EC >7-8    | 56000                                                    | 56000               | 56000               |
| Aromatic EC >8-10   | 5000                                                     | 5000                | 5000                |
| Aromatic EC >10-12  | 5000                                                     | 5000                | 5000                |
| Aromatic EC >12-16  | 5100                                                     | 5100                | 5000                |
| Aromatic EC >16-21  | 3800 <sup>f</sup>                                        | 3800 <sup>f</sup>   | 3800 <sup>f</sup>   |
| Aromatic EC >21-35  | 3800 <sup>f</sup>                                        | 3800 <sup>f</sup>   | 3800 <sup>f</sup>   |
| Aromatic EC >35-44  | 3800 <sup>f</sup>                                        | 3800 <sup>f</sup>   | 3800 <sup>f</sup>   |

<sup>f</sup> oral, dermal, and inhalation exposure compared with oral HCV

<sup>sol</sup> S4UL presented exceeds the solubility saturation limit, which is presented in brackets

The assessment criteria for each of the petroleum hydrocarbon fractions have been taken from Nathanail, C. P., McCaffrey, C., Gillett, A., Ogden, R., and Nathanail, J., 2015, 'The LQM/CIEH S4ULs for Human Health Risk Assessment', Land Quality Press, Nottingham. These are also all based on a sandy loam soil.

Within the Environment Agency Science Report P5-080/TR3, Askari, K. & Pollard, S., 2005 'The UK Approach for Evaluating Human Health Risks from Petroleum Hydrocarbons in Soils' it is stated that the assessment values should not be considered individually; instead the potential additive effects should be calculated. This is achieved by calculating an individual Hazard Quotient (HQ) for each fraction. The HQ is the proportion of the assessment concentration represented by the recorded concentration. The HQs are then added together to form a Hazard Index (HI) and where this exceeds unity a potential significant risk to human health may exist.

Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3153. All rights reserved.

|          |    |         |     |      |          |        |       |
|----------|----|---------|-----|------|----------|--------|-------|
| Prepared | LM | Checked | RAN | Date | 11.09.25 | Job No | 41623 |
|----------|----|---------|-----|------|----------|--------|-------|

|                                                                                                                                                     |                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br>St Andrew's House<br>23 Kingfield Road<br>Sheffield, S11 9AS | <b>CALA HOMES THAMES</b><br><b>NEIGHBOURHOOD CENTRE, HOGWOOD FARM (FINCHWOOD PARK DEVELOPMENT)</b><br><b>ASSESSMENT CRITERIA – PUBLIC OPEN SPACE NEAR HOUSING</b> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## Appendix 4

Geotechnical Test Results (GEO/43098)

**Eastwood and Partners (Consulting Engineers) Limited**

Unit 3 Gander Down Barns  
 Rodfield Lane  
 Ovington  
 Alresford  
 SO24 0HS

GEOLABS Limited  
 Bucknalls Lane  
 Garston  
 Watford  
 Hertfordshire  
 WD25 9XX

Tel: +44(0) 1923 892 190

email: admin@geolabs.co.uk  
 web: www.geolabs.co.uk

09 September 2025

**Report No : GEO/43098/01**

Page 1 of 1

For the attention of      Mr A Luxman

|           |                    |                                    |                   |
|-----------|--------------------|------------------------------------|-------------------|
| Our ref   | <b>GEO / 43098</b> | Date samples received              | 12/08/2025        |
| Your ref  | <b>41623</b>       | Date written instructions received | 11/08/2025        |
| Order ref | <b>41623</b>       | Date testing commenced             | 13/08/2025        |
|           |                    | <b>Date of sample disposal</b>     | <b>07/10/2025</b> |

Project      **HOGWOOD FARM, FINCHAMPSTEAD - P3 NEIGHBOURHOOD CENTRE**

Further to your instructions we have pleasure in enclosing the results of the tests you requested in the attached figures.

**LABORATORY TEST REPORT**

| Item No | Test Quantity | Description                                   |
|---------|---------------|-----------------------------------------------|
| 1       | ~             | Liquid & Plastic Limits Summary               |
| ~       | 7             | Water Content                                 |
| ~       | 7             | Liquid & Plastic Limits                       |
| 2       | 5             | Particle Density                              |
| 3       | 5             | Particle Size Distribution                    |
| 4       | 5             | Water Content / Dry Density Relationship      |
| 5       | 2             | Unconsolidated Undrained Triaxial Compression |

Any opinions or interpretations expressed herein are outside the scope of UKAS accreditation. All results contained in this report are provisional and may be subject to change unless signed by an approved signatory. The results contained in this report relate only to samples received in the laboratory and are tested 'as received' unless otherwise stated. This report should not be reproduced, except in full, without the written approval of the laboratory. The results reported are applicable only to the test items received by the laboratory.

All the necessary data required by the documented test procedures has been recorded and will be stored for a period of not less than 6 years. This data will be issued to yourselves at your request. All samples will be disposed of after the date shown above. Written confirmation will be required to retain the samples beyond this period and a storage charge may be applied.

We trust that the above meets your requirements and should you require any further information or assistance, please do not hesitate to contact us.

Yours faithfully

on behalf of **GEOLABS Limited**



Senior Technician



## **SUMMARY OF LIQUID AND PLASTIC LIMIT TESTS**

Checked and Approved by:

Project Number:

Project Name:

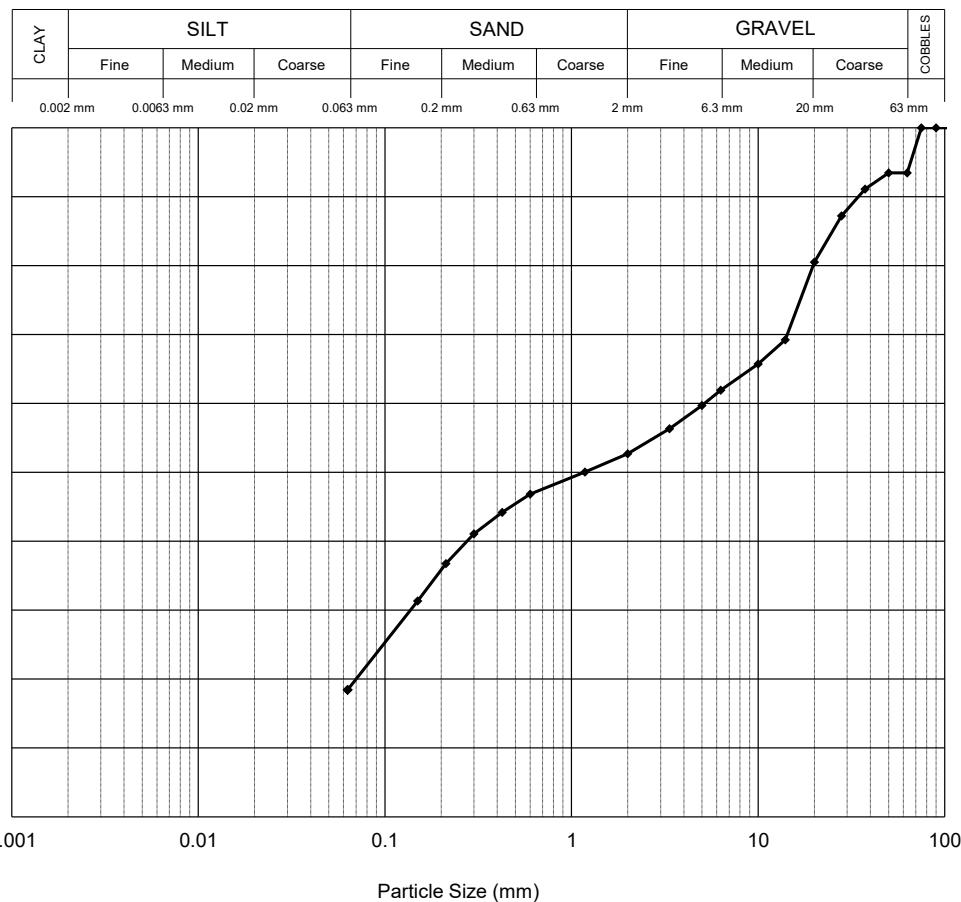
# HOGWOOD FARM, FINCHAMPSTEAD - P3 NEIGHBOURHOOD CENTRE

## 41623



## PARTICLE SIZE DISTRIBUTION

Location  
Sample Ref  
Sample Type


HEAP 4  
B1  
B

## Description

Dark brown gravelly sandy silty CLAY with some cobbles.

## BS EN ISO 17892-4 : 2016 : Clause 5.2 - Wet Sieve

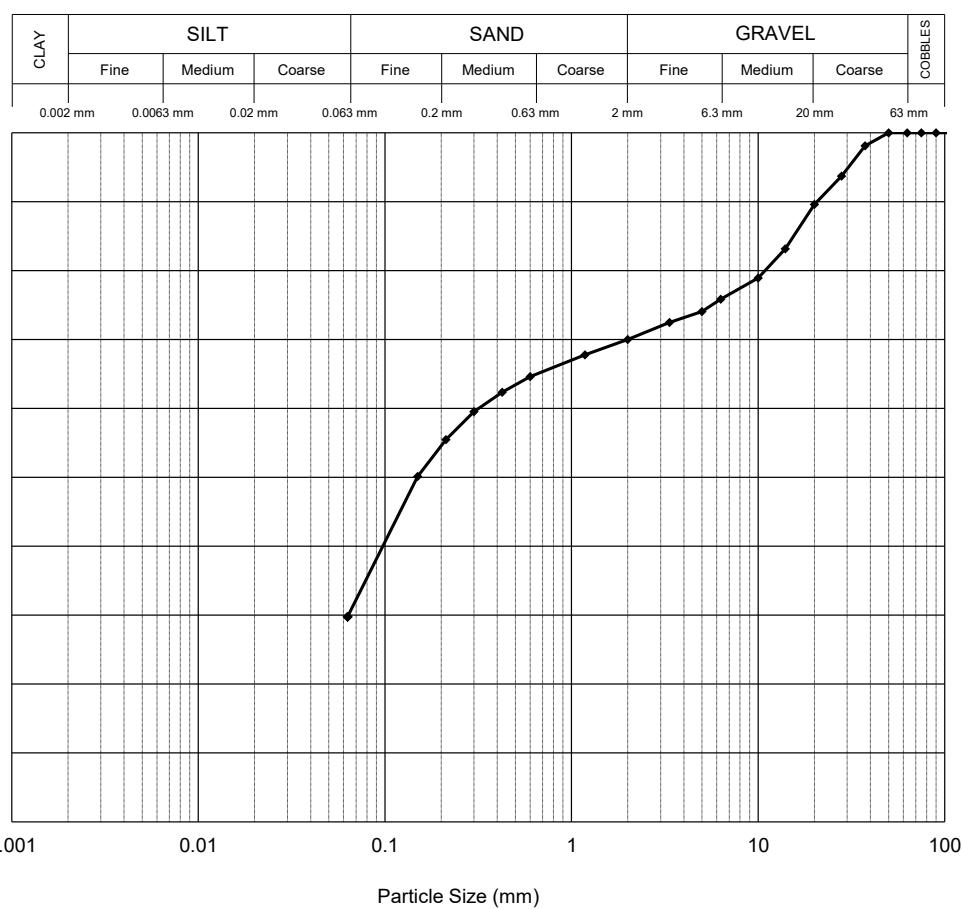
| Sieve    |        |
|----------|--------|
| Size     | % Pass |
| 200.0 mm | 100    |
| 125.0 mm | 100    |
| 90.0 mm  | 100    |
| 75.0 mm  | 100    |
| 63.0 mm  | 93     |
| 50.0 mm  | 93     |
| 37.5 mm  | 91     |
| 28.0 mm  | 87     |
| 20.0 mm  | 81     |
| 14.0 mm  | 69     |
| 10.0 mm  | 66     |
| 6.30 mm  | 62     |
| 5.00 mm  | 60     |
| 3.35 mm  | 56     |
| 2.00 mm  | 53     |
| 1.18 mm  | 50     |
| 600 µm   | 47     |
| 425 µm   | 44     |
| 300 µm   | 41     |
| 212 µm   | 37     |
| 150 µm   | 31     |
| 63 µm    | 18     |



| Particle Proportions |      |
|----------------------|------|
| Cobbles              | 6.6  |
| Gravel               | 40.7 |
| Sand                 | 34.3 |
| Silt & Clay          | 18.4 |

## PARTICLE SIZE DISTRIBUTION

Location  
Sample Ref  
Sample Type


HEAP 4  
B2  
B

## Description

Dark brown sandy gravelly silty CLAY.

## BS EN ISO 17892-4 : 2016 : Clause 5.2 - Wet Sieve

| Sieve    |        |
|----------|--------|
| Size     | % Pass |
| 200.0 mm | 100    |
| 125.0 mm | 100    |
| 90.0 mm  | 100    |
| 75.0 mm  | 100    |
| 63.0 mm  | 100    |
| 50.0 mm  | 100    |
| 37.5 mm  | 98     |
| 28.0 mm  | 94     |
| 20.0 mm  | 90     |
| 14.0 mm  | 83     |
| 10.0 mm  | 79     |
| 6.30 mm  | 76     |
| 5.00 mm  | 74     |
| 3.35 mm  | 72     |
| 2.00 mm  | 70     |
| 1.18 mm  | 68     |
| 600 µm   | 65     |
| 425 µm   | 62     |
| 300 µm   | 60     |
| 212 µm   | 55     |
| 150 µm   | 50     |
| 63 µm    | 30     |



| Particle Proportions |      |
|----------------------|------|
| Cobbles              | 0.0  |
| Gravel               | 30.0 |
| Sand                 | 40.3 |
| Silt & Clay          | 29.7 |

Tested by XW  
Checked and Approved by  
[Redacted]  
S Burke - Senior Technician  
09/09/2025

Project Number:

GEO / 43098

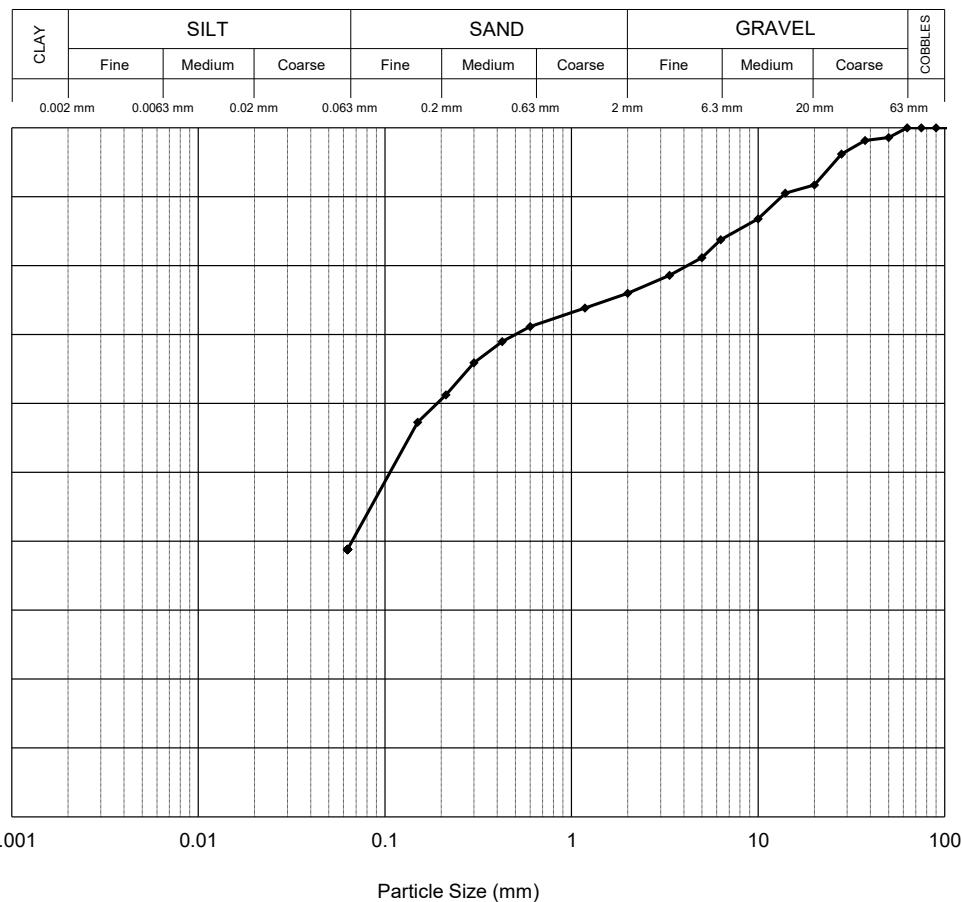
Project Name:

HOGWOOD FARM, FINCHAMPSTEAD - P3 NEIGHBOURHOOD CENTRE  
41623



## PARTICLE SIZE DISTRIBUTION

Location  
Sample Ref  
Sample Type


HEAP 4  
B3  
B

## Description

Dark brown mottled orangish yellow gravelly sandy silty CLAY.

## BS EN ISO 17892-4 : 2016 : Clause 5.2 - Wet Sieve

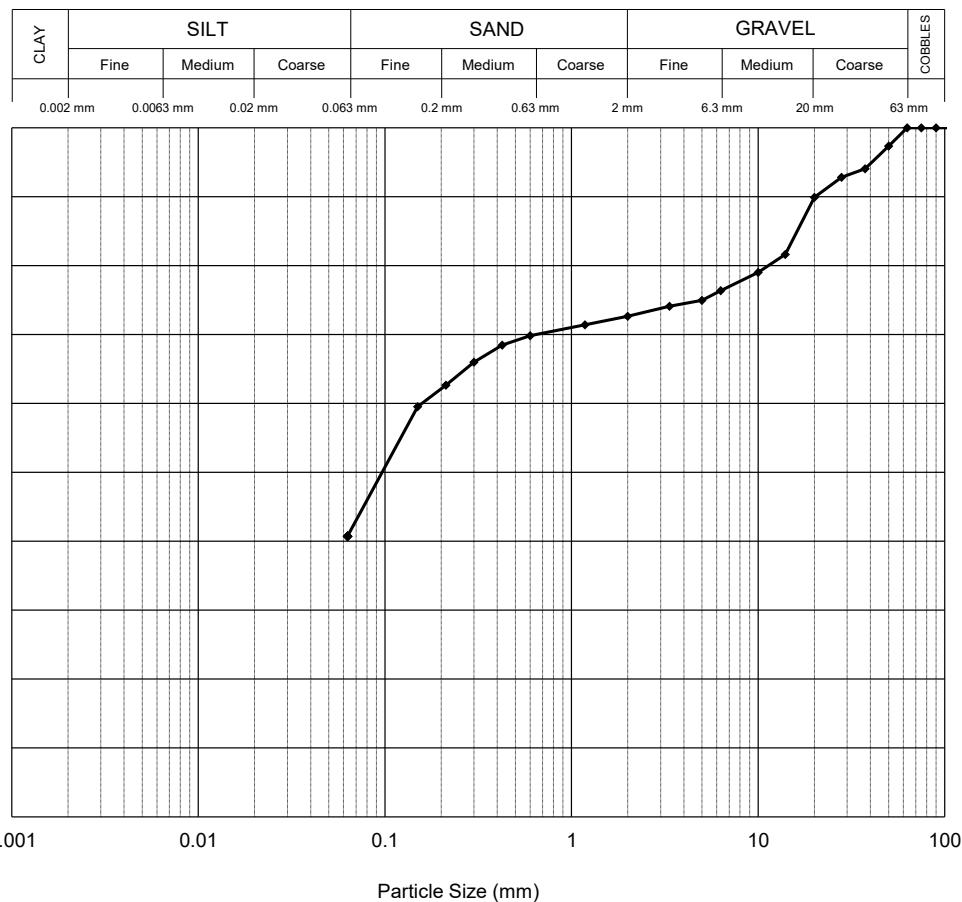
| Sieve    |        |
|----------|--------|
| Size     | % Pass |
| 200.0 mm | 100    |
| 125.0 mm | 100    |
| 90.0 mm  | 100    |
| 75.0 mm  | 100    |
| 63.0 mm  | 100    |
| 50.0 mm  | 99     |
| 37.5 mm  | 98     |
| 28.0 mm  | 96     |
| 20.0 mm  | 92     |
| 14.0 mm  | 90     |
| 10.0 mm  | 87     |
| 6.30 mm  | 84     |
| 5.00 mm  | 81     |
| 3.35 mm  | 79     |
| 2.00 mm  | 76     |
| 1.18 mm  | 74     |
| 600 µm   | 71     |
| 425 µm   | 69     |
| 300 µm   | 66     |
| 212 µm   | 61     |
| 150 µm   | 57     |
| 63 µm    | 39     |



| Particle Proportions |      |
|----------------------|------|
| Cobbles              | 0.0  |
| Gravel               | 24.0 |
| Sand                 | 37.2 |
| Silt & Clay          | 38.8 |

## PARTICLE SIZE DISTRIBUTION

Location  
Sample Ref  
Sample Type


HEAP 4  
B4  
B

## Description

Dark brown sandy gravelly silty CLAY.

## BS EN ISO 17892-4 : 2016 : Clause 5.2 - Wet Sieve

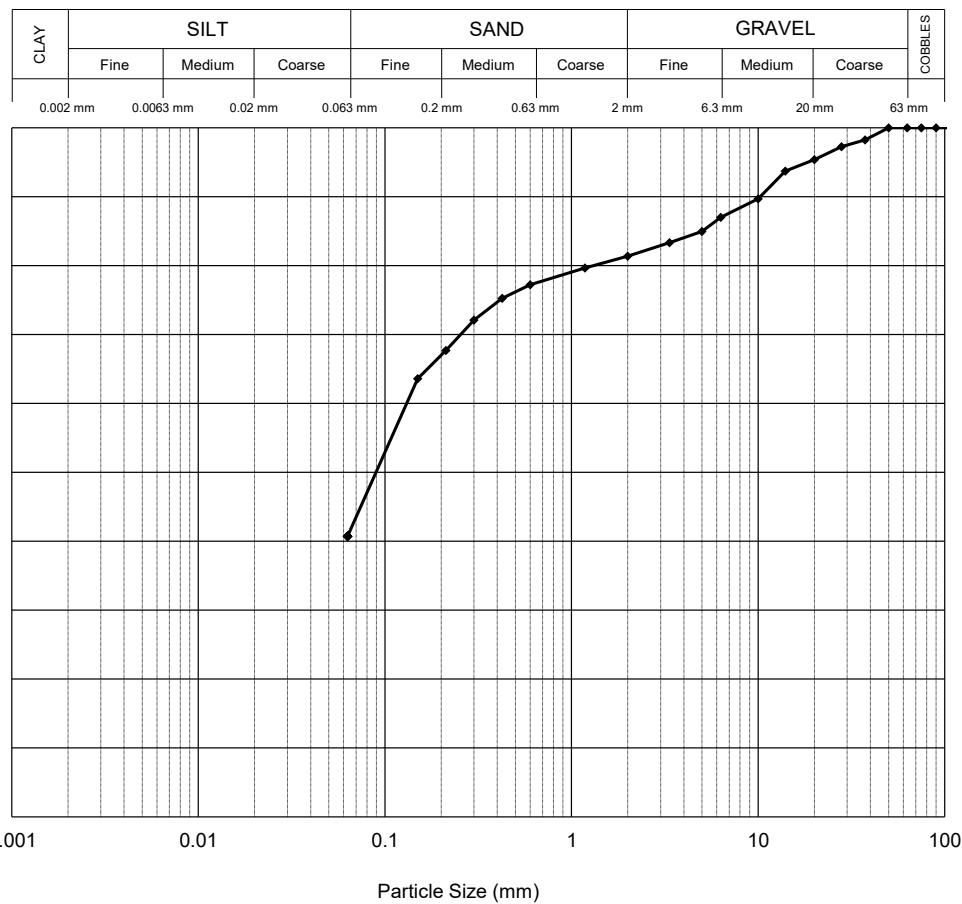
| Sieve    |        |
|----------|--------|
| Size     | % Pass |
| 200.0 mm | 100    |
| 125.0 mm | 100    |
| 90.0 mm  | 100    |
| 75.0 mm  | 100    |
| 63.0 mm  | 100    |
| 50.0 mm  | 97     |
| 37.5 mm  | 94     |
| 28.0 mm  | 93     |
| 20.0 mm  | 90     |
| 14.0 mm  | 82     |
| 10.0 mm  | 79     |
| 6.30 mm  | 76     |
| 5.00 mm  | 75     |
| 3.35 mm  | 74     |
| 2.00 mm  | 73     |
| 1.18 mm  | 71     |
| 600 µm   | 70     |
| 425 µm   | 68     |
| 300 µm   | 66     |
| 212 µm   | 63     |
| 150 µm   | 60     |
| 63 µm    | 41     |



| Particle Proportions |      |
|----------------------|------|
| Cobbles              | 0.0  |
| Gravel               | 27.3 |
| Sand                 | 31.9 |
| Silt & Clay          | 40.8 |

## PARTICLE SIZE DISTRIBUTION

Location  
Sample Ref  
Sample Type


HEAP 4  
B5  
B

## Description

Dark brown mottled orangish yellow gravelly sandy silty CLAY.

## BS EN ISO 17892-4 : 2016 : Clause 5.2 - Wet Sieve

| Sieve    |        |
|----------|--------|
| Size     | % Pass |
| 200.0 mm | 100    |
| 125.0 mm | 100    |
| 90.0 mm  | 100    |
| 75.0 mm  | 100    |
| 63.0 mm  | 100    |
| 50.0 mm  | 100    |
| 37.5 mm  | 98     |
| 28.0 mm  | 97     |
| 20.0 mm  | 95     |
| 14.0 mm  | 94     |
| 10.0 mm  | 90     |
| 6.30 mm  | 87     |
| 5.00 mm  | 85     |
| 3.35 mm  | 83     |
| 2.00 mm  | 81     |
| 1.18 mm  | 80     |
| 600 µm   | 77     |
| 425 µm   | 75     |
| 300 µm   | 72     |
| 212 µm   | 68     |
| 150 µm   | 64     |
| 63 µm    | 41     |



| Particle Proportions |      |
|----------------------|------|
| Cobbles              | 0.0  |
| Gravel               | 18.6 |
| Sand                 | 40.6 |
| Silt & Clay          | 40.8 |

## WATER CONTENT / DRY DENSITY RELATIONSHIP

Location HEAP 4  
Sample Ref B1  
Sample Type B

Description:

Dark brown gravelly sandy silty CLAY with some cobbles.

Preparation

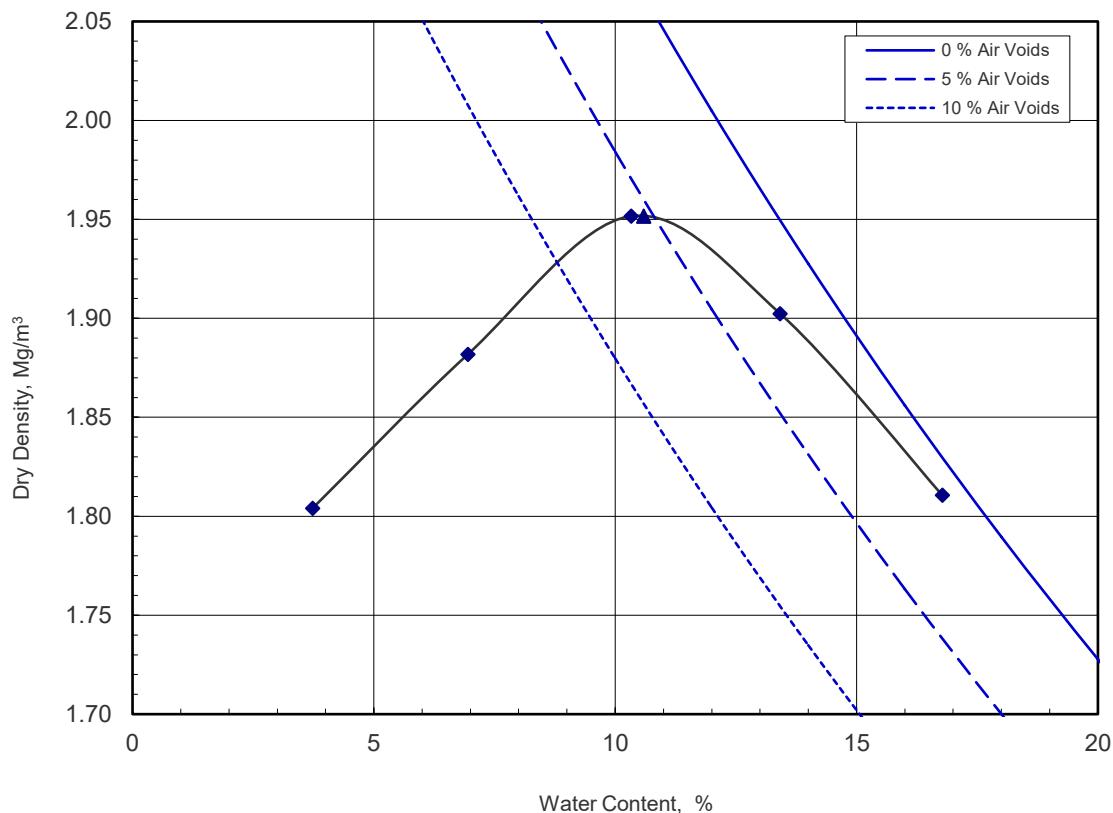
Oven dried

Test Method

2.5 kg Rammer CBR mould for soils with  
some coarse gravel-size particles

Samples Used

Mass Retained on 37.5 mm Sieve % 9


Mass Retained on 20.0 mm Sieve % 11

Grading Zone 5

Particle Density - Measured Mg/m³ 2.64

Maximum Dry Density Mg/m³ 1.95

Optimum Water Content % 10.6



| Determination     | 1    | 2    | 3    | 4    | 5    |
|-------------------|------|------|------|------|------|
| Water Content %   | 3.7  | 6.9  | 10.3 | 13.4 | 16.8 |
| Dry Density Mg/m³ | 1.80 | 1.88 | 1.95 | 1.90 | 1.81 |

## WATER CONTENT / DRY DENSITY RELATIONSHIP

Location HEAP 4  
Sample Ref B2  
Sample Type B

Description:

Dark brown sandy gravelly silty CLAY.

Preparation

Oven dried

Test Method

2.5 kg Rammer CBR mould for soils with  
some coarse gravel-size particles

Samples Used

Single

Mass Retained on 37.5 mm Sieve

%

2

Mass Retained on 20.0 mm Sieve

%

8

Grading Zone

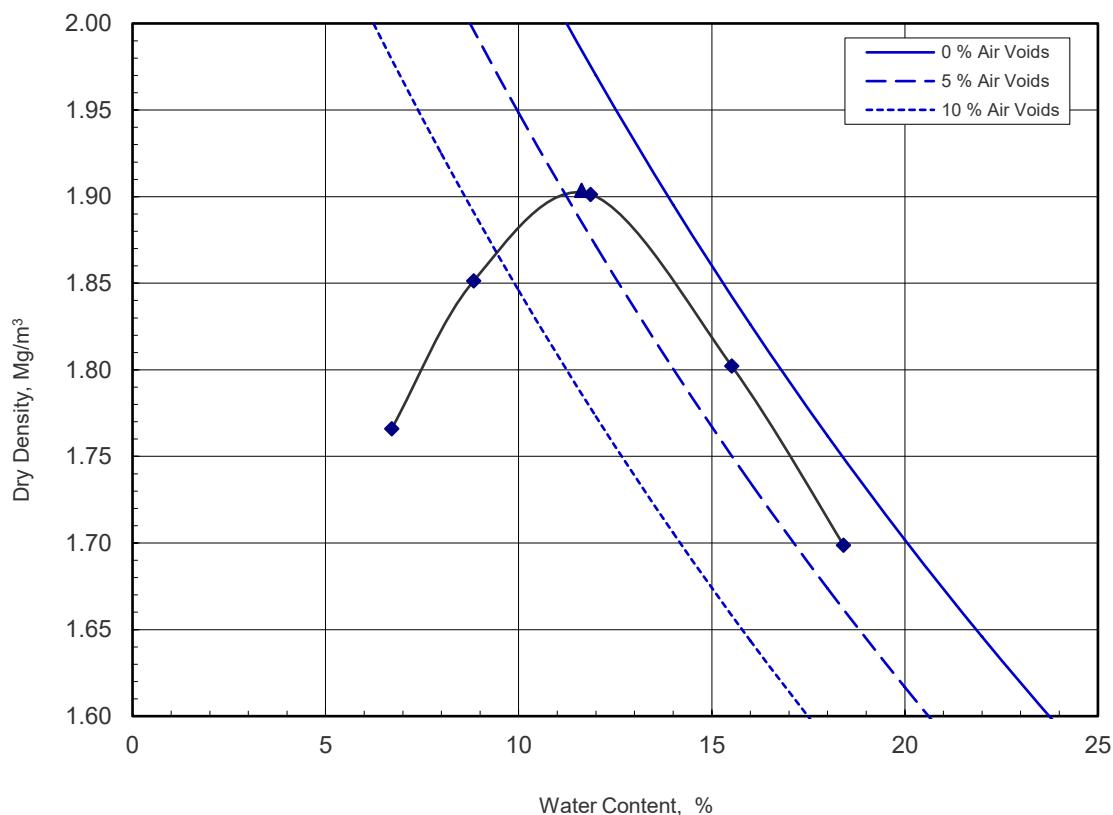
4

Particle Density - Measured

Mg/m<sup>3</sup>

2.58

Maximum Dry Density


Mg/m<sup>3</sup>

1.90

Optimum Water Content

%

11.6



| Determination     | 1    | 2    | 3    | 4    | 5    |
|-------------------|------|------|------|------|------|
| Water Content %   | 6.7  | 8.8  | 11.9 | 15.5 | 18.4 |
| Dry Density Mg/m³ | 1.77 | 1.85 | 1.90 | 1.80 | 1.70 |

## WATER CONTENT / DRY DENSITY RELATIONSHIP

Location HEAP 4  
Sample Ref B3  
Sample Type B

Description:

Dark brown mottled orangish yellow gravelly sandy silty CLAY.

Preparation

Oven dried

Test Method

2.5 kg Rammer CBR mould for soils with  
some coarse gravel-size particles

Samples Used

Single

Mass Retained on 37.5 mm Sieve

%

2

Mass Retained on 20.0 mm Sieve

%

6

Grading Zone

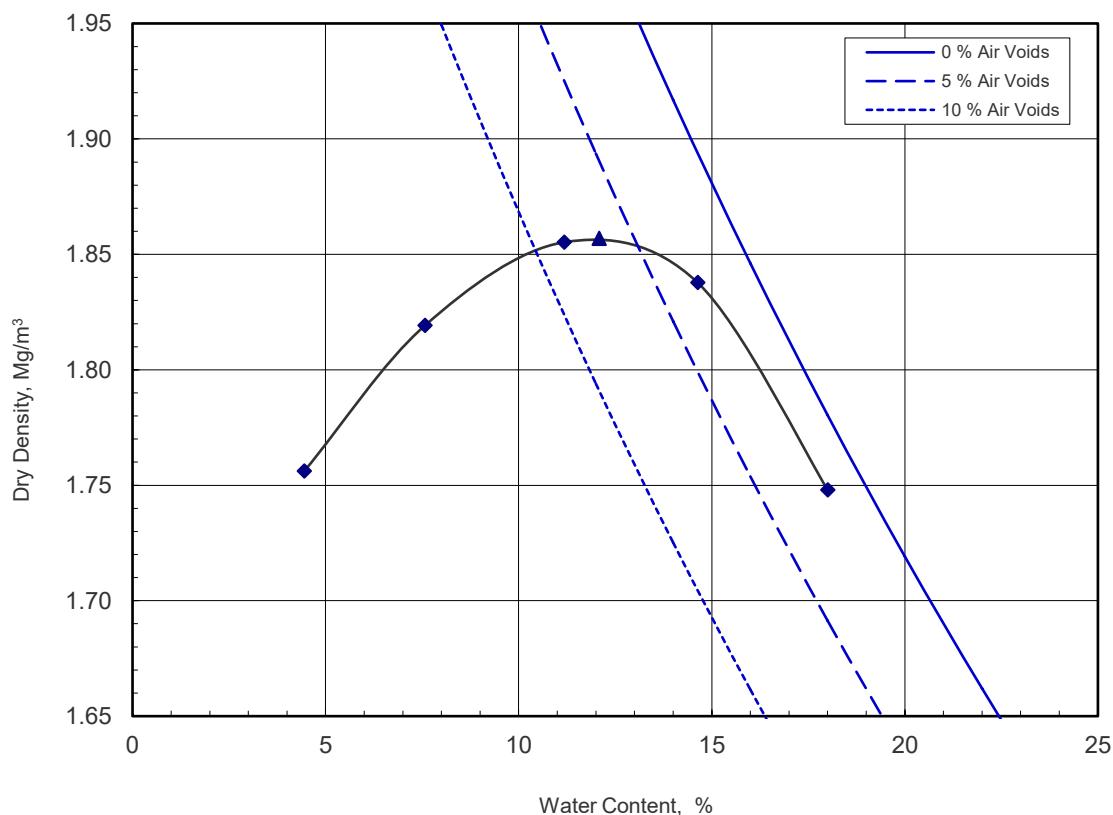
4

Particle Density - Measured

Mg/m<sup>3</sup>

2.62

Maximum Dry Density


Mg/m<sup>3</sup>

1.86

Optimum Water Content

%

12.1



| Determination     | 1    | 2    | 3    | 4    | 5    |
|-------------------|------|------|------|------|------|
| Water Content %   | 4.5  | 7.6  | 11.2 | 14.6 | 18.0 |
| Dry Density Mg/m³ | 1.76 | 1.82 | 1.86 | 1.84 | 1.75 |

Tested by AM  
Checked and Approved by  
[REDACTED]  
S Burke - Senior Technician  
09/09/2025

Project Number:

GEO / 43098

Project Name:

HOGWOOD FARM, FINCHAMPSTEAD - P3 NEIGHBOURHOOD CENTRE  
41623

## WATER CONTENT / DRY DENSITY RELATIONSHIP

Location  
Sample Ref  
Sample Type

HEAP 4  
B4  
B

Description:

Dark brown sandy gravelly silty CLAY.

Preparation

Oven dried

Test Method

2.5 kg Rammer CBR mould for soils with  
some coarse gravel-size particles

Samples Used

Single

Mass Retained on 37.5 mm Sieve

%

6

Mass Retained on 20.0 mm Sieve

%

4

Grading Zone

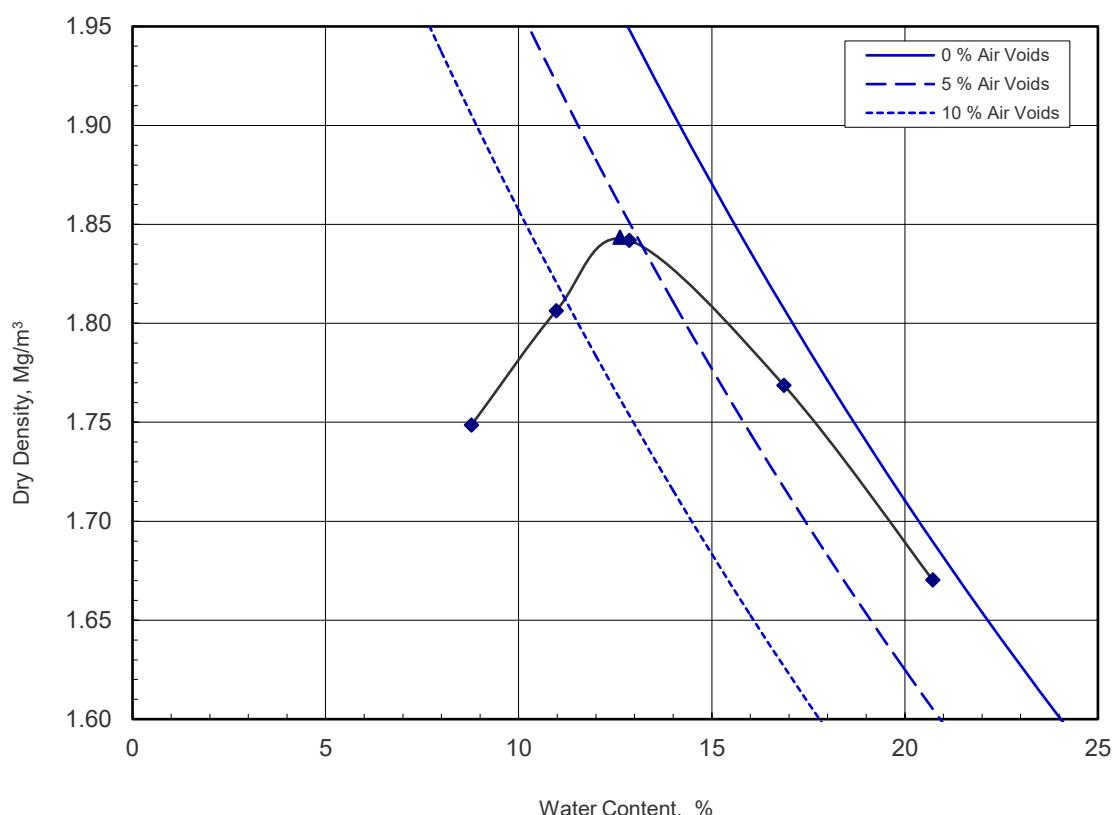
5

Particle Density - Measured

Mg/m<sup>3</sup>

2.60

Maximum Dry Density


Mg/m<sup>3</sup>

1.84

Optimum Water Content

%

12.6



| Determination     | 1    | 2    | 3    | 4    | 5    |
|-------------------|------|------|------|------|------|
| Water Content %   | 8.8  | 11.0 | 12.9 | 16.9 | 20.7 |
| Dry Density Mg/m³ | 1.75 | 1.81 | 1.84 | 1.77 | 1.67 |

## WATER CONTENT / DRY DENSITY RELATIONSHIP

Location HEAP 4  
Sample Ref B5  
Sample Type B

Description:

Dark brown mottled orangish yellow gravelly sandy silty CLAY.

Preparation

Oven dried

Test Method

2.5 kg Rammer CBR mould for soils with  
some coarse gravel-size particles

Samples Used

Single

Mass Retained on 37.5 mm Sieve

%

2

Mass Retained on 20.0 mm Sieve

%

3

Grading Zone

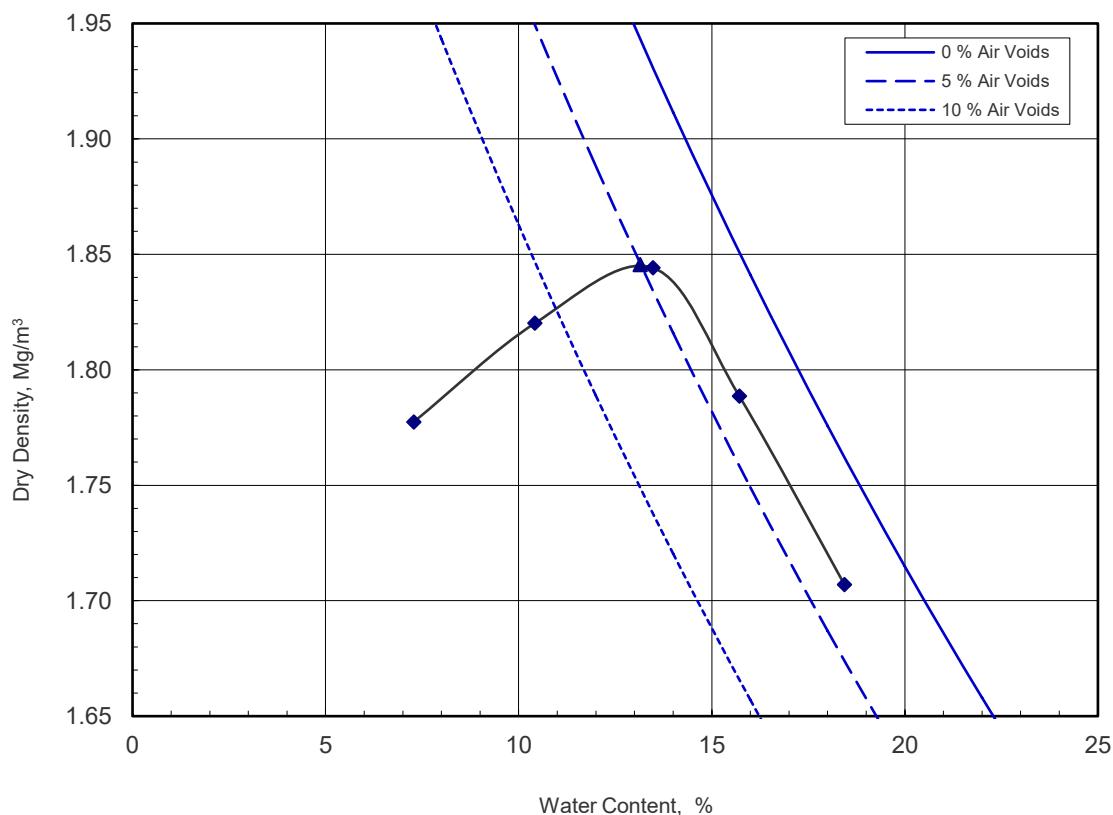
4

Particle Density - Measured

Mg/m<sup>3</sup>

2.61

Maximum Dry Density


Mg/m<sup>3</sup>

1.85

Optimum Water Content

%

13.1



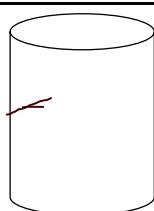
| Determination     | 1    | 2    | 3    | 4    | 5    |
|-------------------|------|------|------|------|------|
| Water Content %   | 7.3  | 10.4 | 13.5 | 15.7 | 18.4 |
| Dry Density Mg/m³ | 1.78 | 1.82 | 1.84 | 1.79 | 1.71 |

## UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION

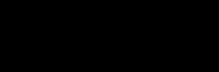
Location BH1-NC  
 Sample Ref No.1  
 Sample Depth 7.50 m  
 Sample Type U

## Description:

Very stiff fissured grey silty CLAY.


## Specimen Details

|                                   |             |
|-----------------------------------|-------------|
| Specimen conditions               | Undisturbed |
| Length (mm)                       | 200.3       |
| Diameter (mm)                     | 101.6       |
| Water content (%)                 | 20.2        |
| Bulk density (Mg/m <sup>3</sup> ) | 2.19        |
| Dry density (Mg/m <sup>3</sup> )  | 1.82        |


## Test Details

|                                        |       |
|----------------------------------------|-------|
| Latex membrane thickness (mm)          | 0.3   |
| Specimen height prior to shearing (mm) | 200.2 |
| Membrane correction (kPa)              | 0.5   |
| Mean rate of shear (%/min)             | 2.0   |
| Cell pressure (kPa)                    | 150   |
| Strain at failure (%)                  | 7.0   |
| Maximum deviator stress (kPa)          | 459   |
| Shear Stress Cu (kPa)                  | 230   |

## Mode of failure



|                              |          |
|------------------------------|----------|
| Orientation of the sample    | Vertical |
| Distance from top of tube mm | 100      |

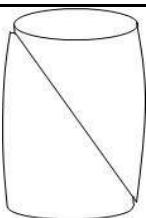


## UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION

Location BH1-NC  
 Sample Ref No.3  
 Sample Depth 14.00 m  
 Sample Type U

## Description:

Very stiff fissured brownish grey silty CLAY.


## Specimen Details

|                                   |             |
|-----------------------------------|-------------|
| Specimen conditions               | Undisturbed |
| Length (mm)                       | 201.1       |
| Diameter (mm)                     | 101.9       |
| Water content (%)                 | 22.0        |
| Bulk density (Mg/m <sup>3</sup> ) | 2.09        |
| Dry density (Mg/m <sup>3</sup> )  | 1.72        |

## Test Details

|                                        |       |
|----------------------------------------|-------|
| Latex membrane thickness (mm)          | 0.3   |
| Specimen height prior to shearing (mm) | 200.7 |
| Membrane correction (kPa)              | 0.9   |
| Mean rate of shear (%/min)             | 2.0   |
| Cell pressure (kPa)                    | 280   |
| Strain at failure (%)                  | 14.0  |
| Maximum deviator stress (kPa)          | 455   |
| Shear Stress Cu (kPa)                  | 227   |

## Mode of failure



|                              |          |
|------------------------------|----------|
| Orientation of the sample    | Vertical |
| Distance from top of tube mm | 170      |

## Appendix 5

Groundwater Monitoring Report, reference 41623/007

Nick Jordan  
 Legal & General Homes Communities  
 One Coleman Street  
 London  
 EC2R 5AA

CAT/RAN/41623-007

21 August 2019

Dear Nick,

### **Hogwood Farm, Arborfield – Groundwater Monitoring Report**

We are writing to report on the groundwater monitoring which was undertaken at this site between July 2018 and June 2019.

#### **Monitoring visits**

Monthly visits were undertaken by E&P during which, monitoring of the water depth in each of the twenty-two installed monitoring wells was undertaken. WS22, located in the SANG area in the southern part of the site could not be located and was not monitored during any of the visits. All remaining wells (WS1 to WS21 and WS23) were monitored on at least one occasion. The occasions during which monitoring could not be undertaken are listed in the table below, along with the corresponding reasons.

| <b>Monitoring well</b> | <b>Dates not monitored</b> | <b>Reason</b>                                                       |
|------------------------|----------------------------|---------------------------------------------------------------------|
| WS2                    | June 2019                  | Well destroyed/buried by ongoing construction works in the vicinity |
| WS4                    | July to August 2018        | Could not locate                                                    |
| WS11                   | December 2018 to June 2019 | Well destroyed/buried during archaeological works in the vicinity   |
| WS15                   | June 2019                  | Well monitored but found to be dry and silted up to 1.15 m          |
| WS22                   | All                        | Could not locate well, suspect it was not installed                 |
| WS23                   | December 2018 to June 2019 | Well destroyed/buried during archaeological works in the vicinity   |

In addition to the above, no monitoring was undertaken during November 2018.

#### **Monitoring Results**

The monitoring commenced in July 2018 where the water level was recorded to be between 1.2 m and 2.1 m below ground level (bgl) across the site. The water levels then dropped to

their deepest in September 2018 where they were found to be between 1.2 m and 2.7 m bgl. The levels then rose to a peak in March 2019 where the levels were found to be between 0.0 m and 0.96 m bgl. As expected, the levels then fell towards June 2019, although small rises were recorded in a few wells between May and June.

A copy of the spreadsheet outlining the monitoring results is attached along with a graph demonstrating the annual cyclical nature of the water levels.

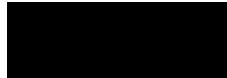
### **Interpretation of Results**

From the results recorded we have produced two plans showing the groundwater contours across the site;

- Drawing 41623/005 – Groundwater Monitoring Locations with Highest Water Depths; and
- Drawing 41623/006 – Groundwater Monitoring Locations with Lowest Water Depths

Copies of the plans are enclosed. These both show a similar trend with water levels being highest in the north west and north east, falling south east and south west respectively, towards the centre of the southern area of the site.

The enclosed Ordnance Survey (OS) plan shows a large number of surface watercourses and ponds both on the site and in the surrounding area. The OS extract which covers a wider area also shows a large number of surface water features, including the Blackwater River located around 550 m south of the site. A surface water drain/stream is indicated to run through the site, exiting at the centre of the southern boundary of the site. This then turns south west and flows directly to the Blackwater River. This is therefore consistent with the contours plotted from the water monitoring, which indicate the water levels to fall towards the drain/stream.


The elevation of the site is between around 52 m AOD in the south and east to around 60 m AOD in the north. The Blackwater River lies at an elevation of around 50 m AOD. It is therefore not unexpected that the groundwater is encountered at shallow depth below the site. The water depths recorded are therefore considered to represent the true groundwater level, and not a perched water table.

### **Conclusion**

Water monitoring of twenty-two monitoring wells across the site over twelve months between July 2018 and June 2019 has demonstrated an annual cyclical pattern with water levels being

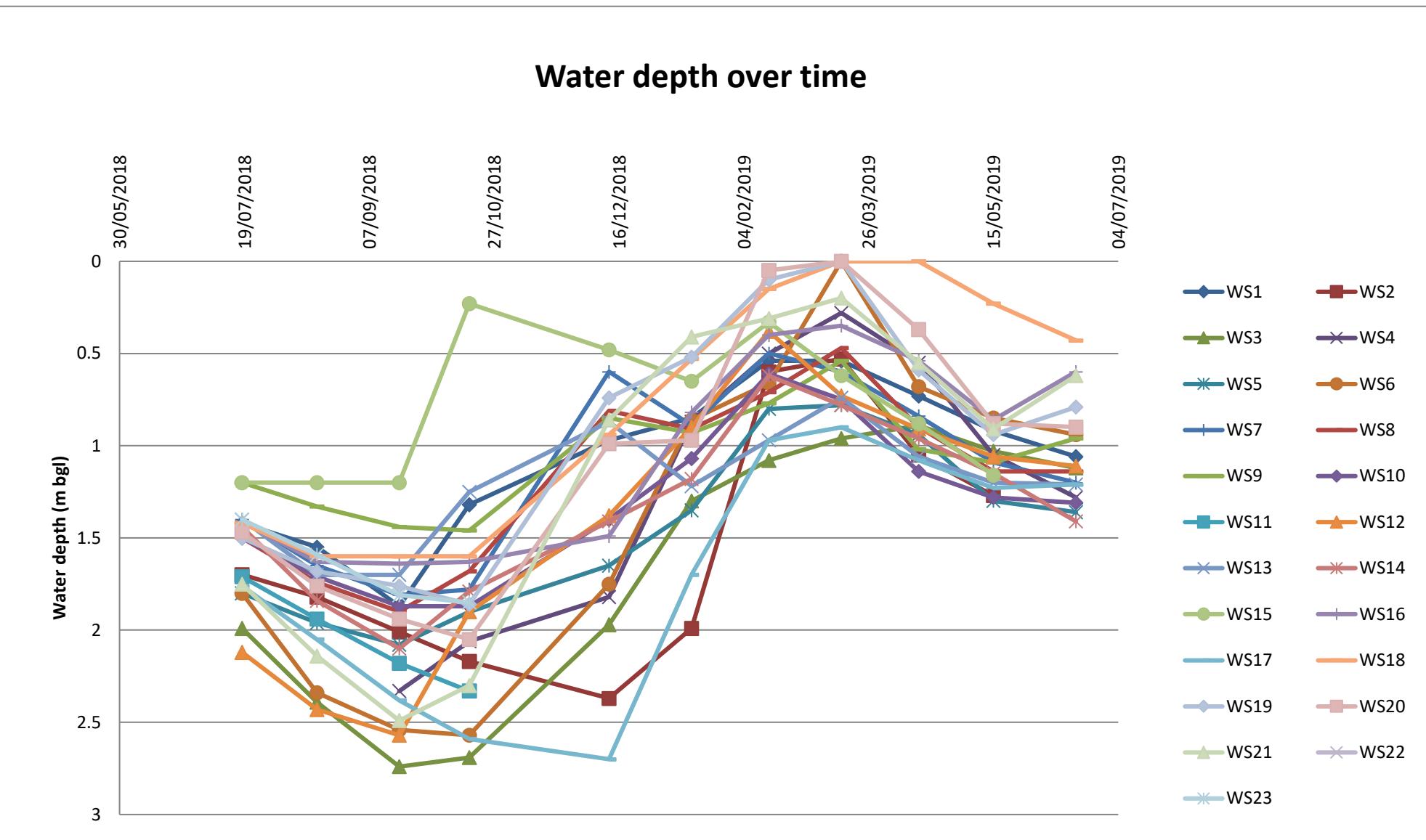
shallowest towards the end of the winter period/beginning of spring and deepest towards the end of the summer period/beginning of autumn. The water levels were observed to be relatively shallow, with water recorded at the surface on a few occasions in a small number of wells. Contour plans have been produced which indicate the groundwater is flowing towards a surface water drain/stream which exits the centre of the southern boundary of the site and flows towards the Blackwater River. The values recorded are considered to be representative of the true groundwater, and not a perched water table.

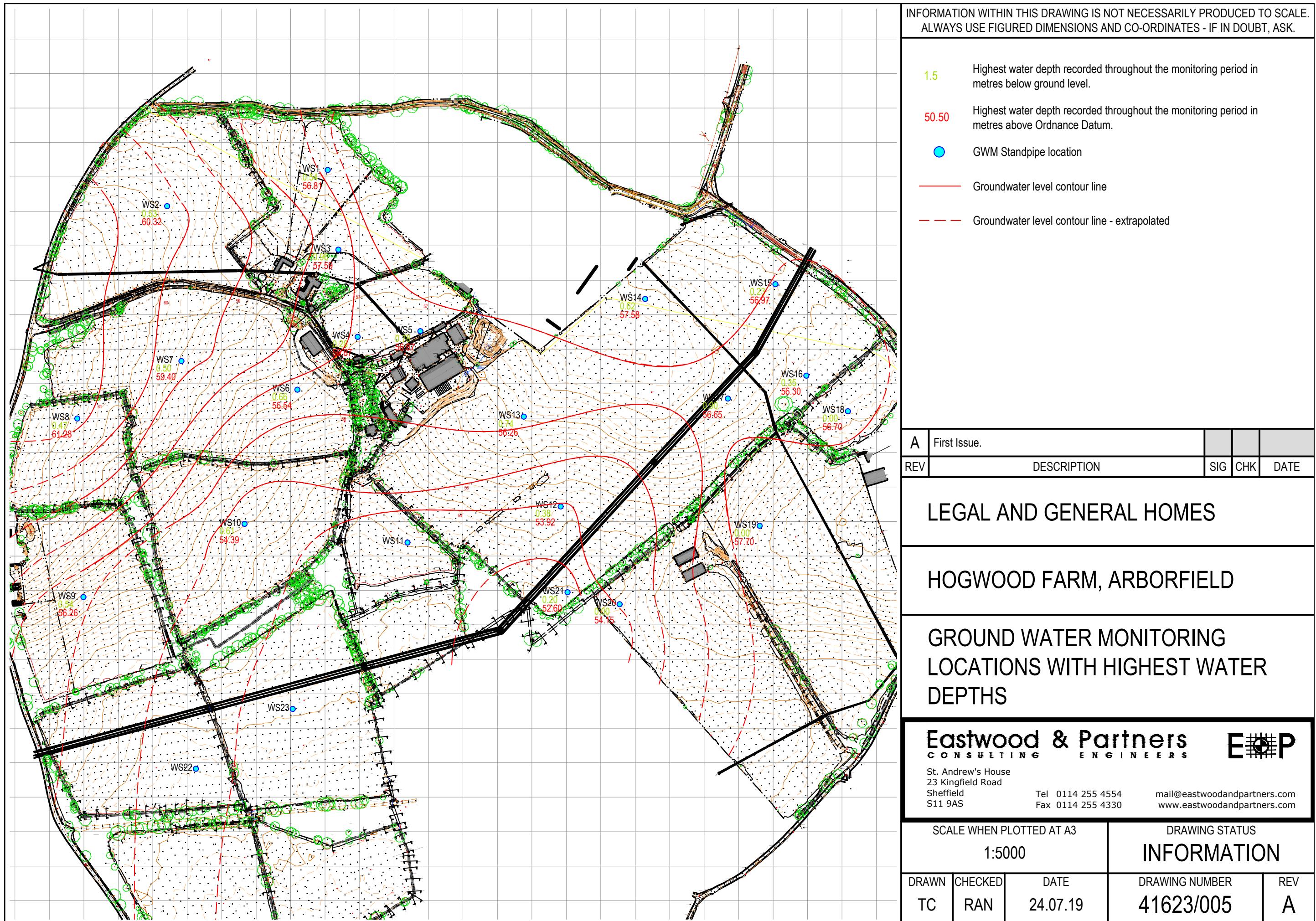
Yours sincerely

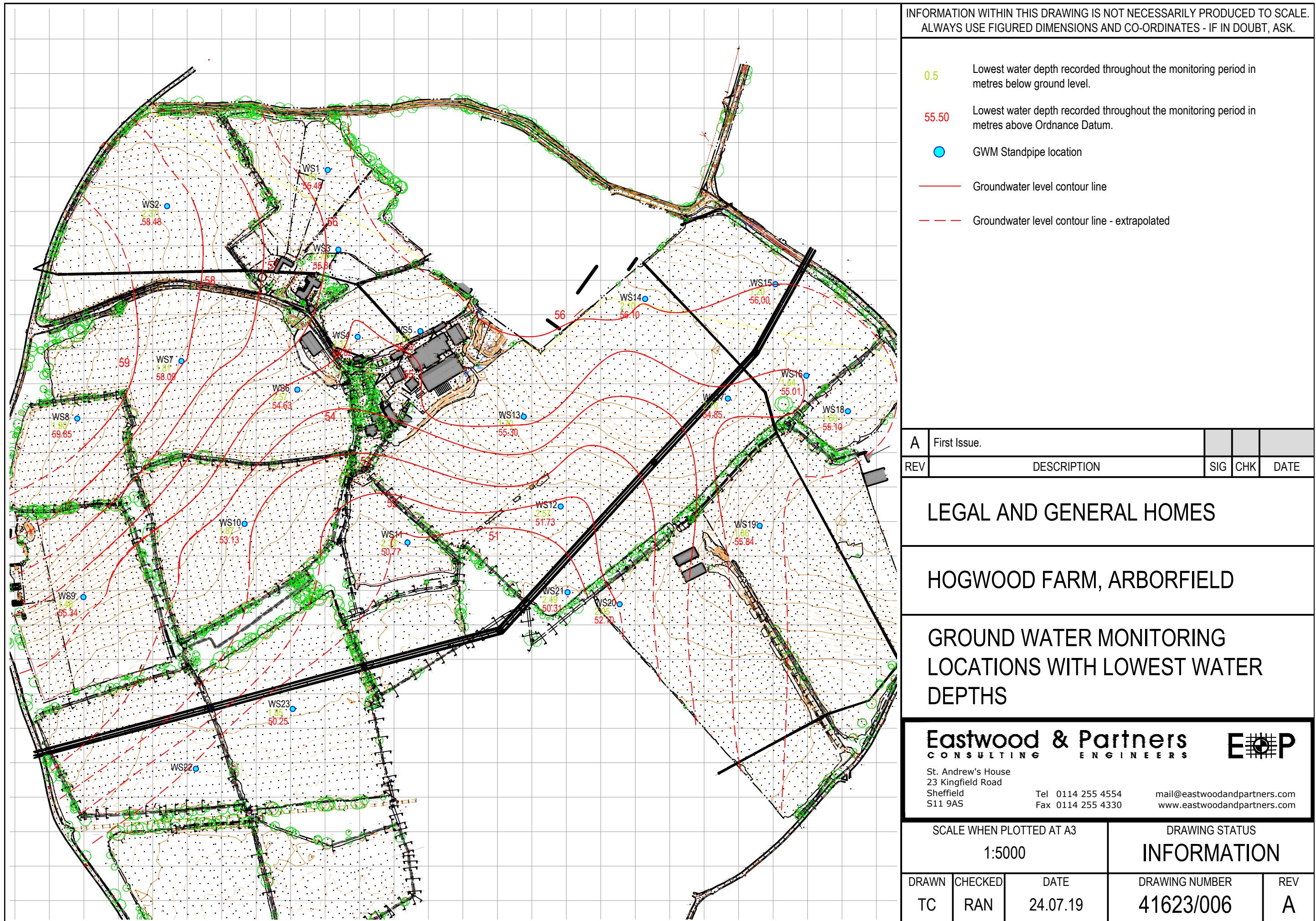


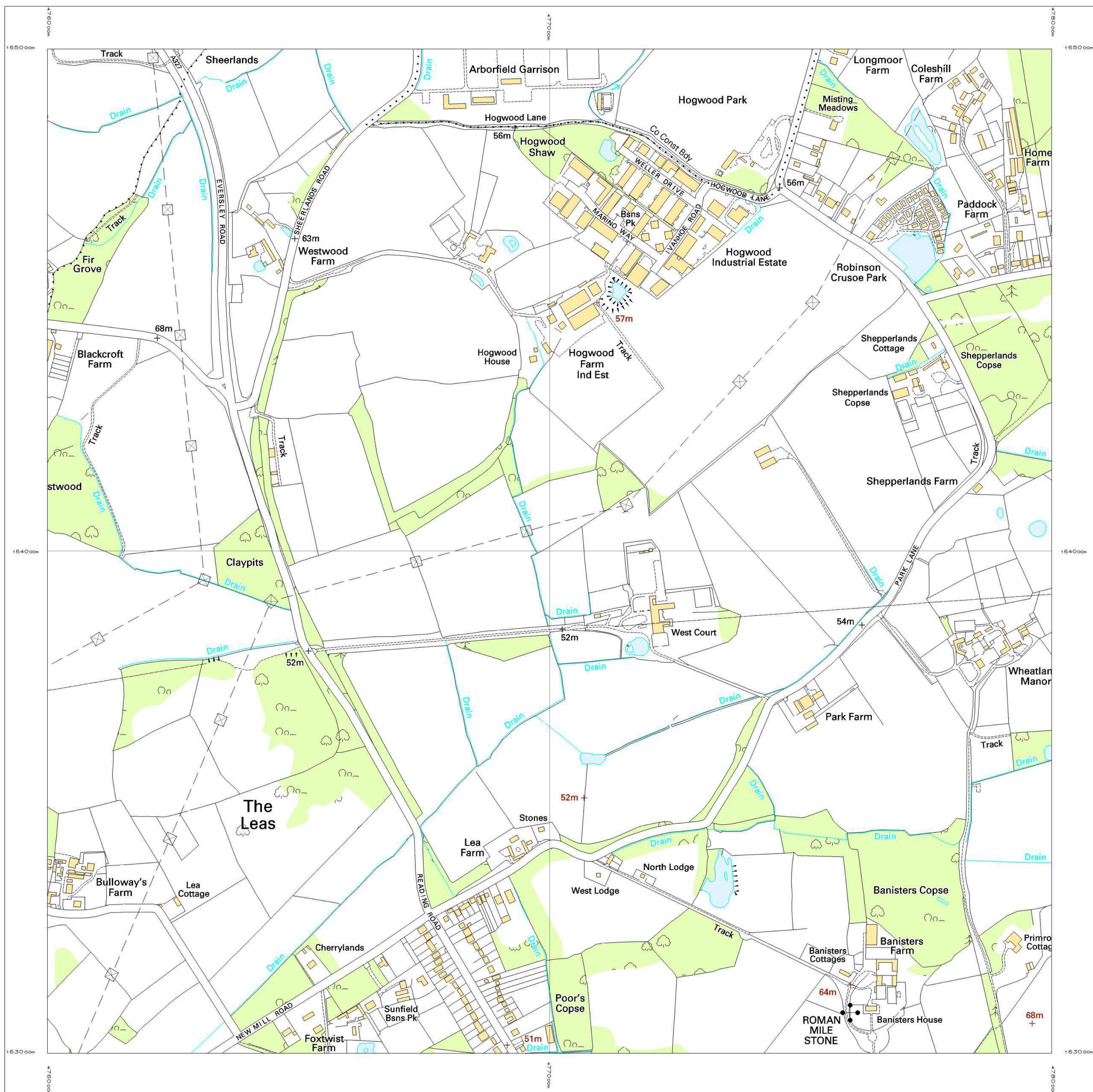
**Catherine Topliss**

Enc. Monitoring results spreadsheet  
Graph of monitoring results  
Drawings 41623/005 and 41623/006  
Ordnance Survey Plan and Ordnance Survey Extract


## Groundwater Monitoring Results Table


| Monitoring well | Water level (mbgl) |            |            |            |            |            |            |            |            |            |            | Depth (m bgl) |
|-----------------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|---------------|
|                 | 18/07/2018         | 17/08/2018 | 19/09/2018 | 17/10/2018 | 12/12/2018 | 14/01/2019 | 14/02/2019 | 15/03/2019 | 15/04/2019 | 15/05/2019 | 17/06/2019 |               |
| WS1             | 1.42               | 1.55       | 1.87       | 1.32       | 0.97       | 0.85       | 0.54       | 0.54       | 0.73       | 0.92       | 1.06       | 2.9           |
| WS2             | 1.7                | 1.82       | 2.01       | 2.17       | 2.37       | 1.99       | 0.6        | 0.53       | 1.05       | 1.27       |            | 2.8           |
| WS3             | 1.99               | 2.39       | 2.74       | 2.69       | 1.97       | 1.3        | 1.08       | 0.96       | 0.89       | 1.03       | 1.12       | 3             |
| WS4             |                    |            | 2.33       | 2.06       | 1.82       | 0.87       | 0.5        | 0.28       | 0.55       | 1.05       | 1.28       | 3.7           |
| WS5             | 1.8                | 1.96       | 2.08       | 1.9        | 1.65       | 1.35       | 0.8        | 0.78       | 0.94       | 1.3        | 1.36       | 3.6           |
| WS6             | 1.8                | 2.34       | 2.54       | 2.57       | 1.75       | 0.86       | 0.66       | 0          | 0.68       | 0.85       | 0.94       | 3.8           |
| WS7             | 1.4                | 1.65       | 1.81       | 1.78       | 0.6        | 0.89       | 0.5        | 0.6        | 0.84       | 1.09       | 1.2        | 3.6           |
| WS8             | 1.5                | 1.74       | 1.9        | 1.68       | 0.81       | 0.91       | 0.71       | 0.47       | 0.9        | 1.14       | 1.14       | 2.8           |
| WS9             | 1.2                | 1.33       | 1.44       | 1.46       | 0.85       | 0.93       | 0.77       | 0.54       | 1.02       | 1.09       | 0.96       | 3.9           |
| WS10            | 1.5                | 1.71       | 1.87       | 1.87       | 1.4        | 1.07       | 0.61       | 0.75       | 1.14       | 1.28       | 1.31       | 2.8           |
| WS11            | 1.71               | 1.94       | 2.18       | 2.33       |            |            |            |            |            |            |            | 2.5           |
| WS12            | 2.12               | 2.43       | 2.57       | 1.9        | 1.38       | 0.9        | 0.38       | 0.73       | 0.91       | 1.06       | 1.11       | 2.9           |
| WS13            | 1.4                | 1.7        | 1.7        | 1.25       | 0.87       | 1.22       | 0.97       | 0.74       | 1.06       | 1.2        | 1.21       | 1.8           |
| WS14            | 1.44               | 1.84       | 2.1        | 1.79       | 1.41       | 1.18       | 0.62       | 0.78       | 0.96       | 1.15       | 1.41       | 2.9           |
| WS15            | 1.2                | 1.2        | 1.2        | 0.23       | 0.48       | 0.65       | 0.33       | 0.62       | 0.88       | 1.16       |            | 1.3           |
| WS16            | 1.41               | 1.63       | 1.64       | 1.63       | 1.49       | 0.82       | 0.4        | 0.35       | 0.54       | 0.86       | 0.6        | 1.6           |
| WS17            | 1.76               | 2.05       | 2.38       | 2.59       | 2.7        | 1.7        | 0.97       | 0.9        | 1.08       | 1.23       | 1.21       | 2.7           |
| WS18            | 1.42               | 1.6        | 1.6        | 1.6        | 0.94       | 0.53       | 0.15       | 0          | 0          | 0.23       | 0.43       | 2.7           |
| WS19            | 1.5                | 1.68       | 1.76       | 1.86       | 0.74       | 0.52       | 0.1        | 0          | 0.59       | 0.94       | 0.79       | 3.5           |
| WS20            | 1.47               | 1.76       | 1.94       | 2.05       | 0.99       | 0.97       | 0.05       | 0          | 0.37       | 0.88       | 0.9        | 2.9           |
| WS21            | 1.75               | 2.14       | 2.49       | 2.3        | 0.86       | 0.41       | 0.31       | 0.2        | 0.55       | 0.91       | 0.62       | 3.3           |
| WS22            |                    |            |            |            |            |            |            |            |            |            |            | 3.6           |
| WS23            | 1.4                | 1.59       | 1.81       | 1.85       |            |            |            |            |            |            |            | 2.9           |


17/06/2019


WS2 - Destroyed/buried

WS15 - Dry (silted up to 1.15 m)









Plotted 06 Nov 2009 from Ordnance Survey  
digitally derived data.

Produced using significant survey information  
from Ordnance Survey large scales digital data,  
and incorporated into OS Landplan Nov 2008.

© Crown copyright 2009.

Reproduction in whole or in part is prohibited without  
the prior written permission of Ordnance Survey.

Administrative boundaries revised to Oct 2008.

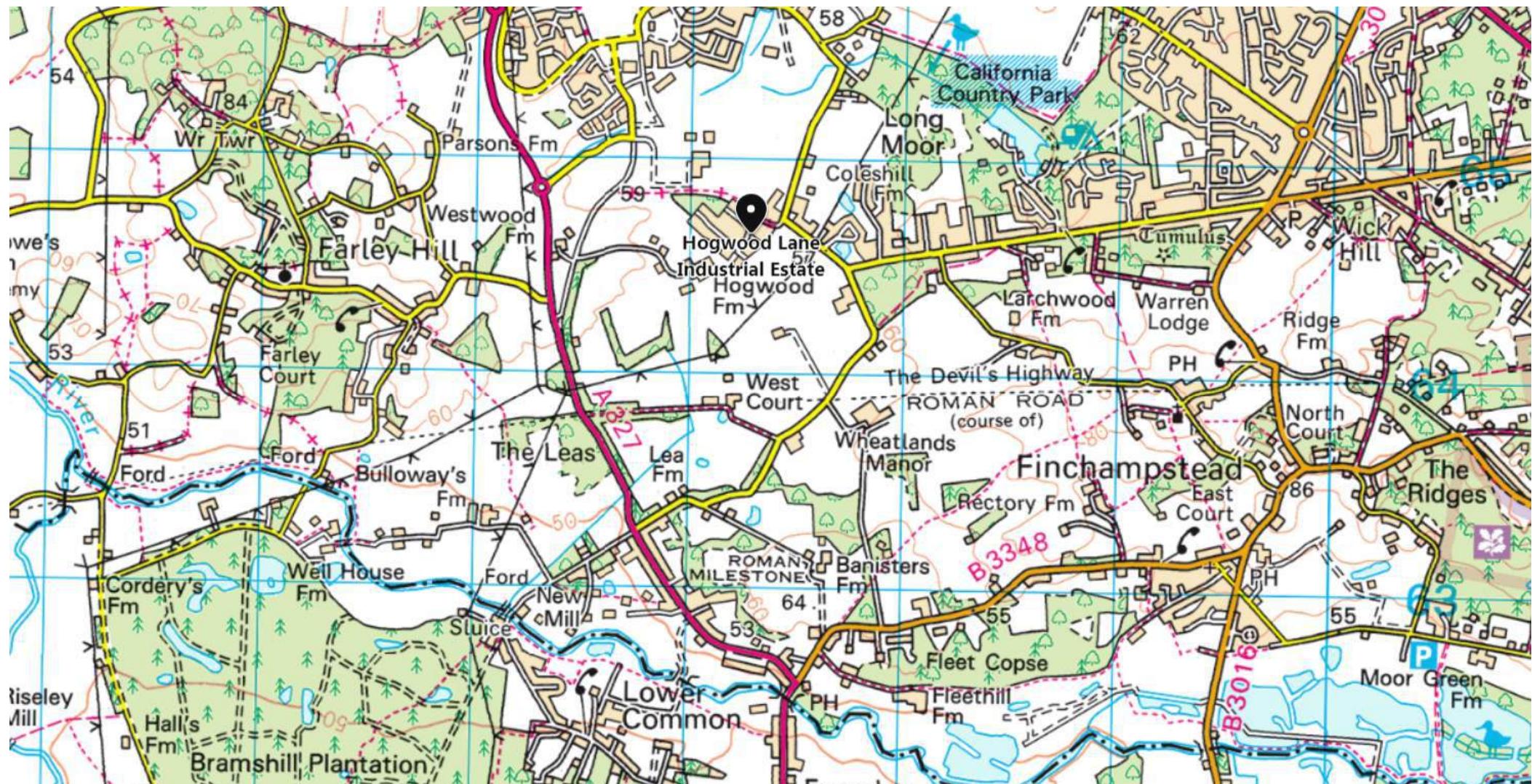
Additional boundaries information:



100 50 0 100 200 300 400 500  
Metres

Scale 1:5000

This OS Landplan plot is enlarged from derived  
mapping produced at 1:10000 scale.


Heights are given in metres above Newlyn Datum.  
The representation of a road, track or  
path is no evidence of a right of way.

The alignment of tunnels is approximate.

An OS Landplan symbols leaflet is available  
on request from Ordnance Survey Mapping and  
Data Centres.

Ordnance Survey, the OS Symbol and OS Landplan  
are registered trade marks of Ordnance Survey,  
the national mapping agency of Great Britain.

Plot centre coordinates: 477000 164000  
Supplied by: Thomas Print Room  
Plot serial number: 00145800





# Eastwood

CONSULTING ENGINEERS

St Andrew's House

23 Kingfield Road

Sheffield, S11 9AS

[mail@eastwoodce.com](mailto:mail@eastwoodce.com)

0114 255 4554

[eastwoodce.com](http://eastwoodce.com)