

Site Investigation

HOGWOOD FARM (FINCHWOOD PARK DEVELOPMENT)

CALA HOMES THAMES AND LEGAL & GENERAL HOMES LIMITED

25 APRIL 2024

GEOTECHNICAL AND GEO-ENVIRONMENTAL SITE INVESTIGATION

PARCEL 4 HOGWOOD FARM (FINCHWOOD PARK DEVELOPMENT)

FOR

**CALA HOMES THAMES AND
LEGAL & GENERAL HOMES LIMITED**

ISSUE 3

41623-041

25 April 2024

Eastwood Consulting Engineers is a trading name of Eastwood and Partners (Consulting Engineers) Limited
Registered Office: St Andrew's House, 23 Kingfield Road, Sheffield, S11 9AS, Company No: 1835021, VAT Registration No: 738 2114 44

Directors: S R Ellis BEng CEng MIStructE MICE | S J English BEng CEng MIStructE | C A Topliss BSc CEnv CSci CGeoL SiLC FICE FGS
A R Priest BEng | A G Marshall BEng CEng MIStructE

Technical Directors: A Allison BEng | M P Chappell BEng CEng MIStructE | K Edwards MSci CGeoL FGS
C Hodge EngTech MICE | A J Kerslake BEng FGS

Senior Associates: C A Wood BSc CEng MIStructE MICE

Associates/Principals: A M Cross MEng CEng MICE | A Lavelle MEng CEng MICE | R A Noble BSc FGS | C L Capes BSc FGS | R Wall BSc CGeoL FGS
W T Chidawanyika BSc CEng MIEI MICE | A J Cartlidge MEng | C J Burgoyne BSc IEng MICE | G C Burgin BSc MSc FGS

Consultants: P Richardson BSc CEng MICE FIStructE | S D Preston BEng CEng FICE FIStructE | K R Pursall BEng CEng MIStructE

GEOTECHNICAL AND GEO-ENVIRONMENTAL SITE INVESTIGATION

**PARCEL 4
HOGWOOD FARM
(FINCHWOOD PARK DEVELOPMENT)**

FOR

**CALA HOMES THAMES AND
LEGAL & GENERAL HOMES LIMITED**

ISSUE 3

Job No. : 41623
Report Status : FINAL
Document Date : 25 April 2024
Approved :

Ruth Noble

CONTENTS

1.0	EXECUTIVE SUMMARY	5
2.0	INTRODUCTION	7
2.1	Terms of Reference	7
2.2	Context	7
2.3	Aims and Objectives	7
2.4	Scope of Investigation.....	7
2.5	Limitations of Investigation.....	8
3.0	THE SITE	9
3.1	Description.....	9
4.0	SUMMARY OF PHASE 1 ASSESSMENT	10
4.1	History.....	10
4.1.1	The Site	10
4.1.2	The Surrounding Area.....	10
4.2	Geology	10
4.3	Hydrogeology.....	11
4.4	Hydrology.....	11
4.5	Ground Gas	11
4.6	Potential Pollutant Linkages	11
5.0	GROUND INVESTIGATION	13
5.1	Site Works	13
5.2	Laboratory Testing	13
6.0	GROUND CONDITIONS	14
6.1	Surface Covering	14
6.2	Made Ground.....	14
6.3	Natural Ground	14
6.4	Obstructions.....	14
6.5	Groundwater	14

6.6	Evidence of Contamination	15
7.0	GEOTECHNICAL APPRAISAL	16
7.1	Laboratory Geotechnical Testing.....	16
7.2	In-Situ Testing.....	17
7.3	Foundations	17
7.4	Ground Floors.....	18
7.5	Superstructure Precautions.....	18
7.6	Excavation Problems	19
7.7	Obstructions.....	19
7.8	Roads	19
7.9	Surface Water Drainage.....	19
8.0	REFINEMENT OF OUTLINE CONCEPTUAL MODEL	20
8.1	Source Characterisation.....	20
8.2	Ground Conditions	20
8.3	Gas Precautions	20
8.4	Unexpected Contamination	20
8.5	Chemical Testing	20
8.6	Assessment Criteria.....	21
8.7	Chemical Test Results	21
	8.7.1 Topsoil.....	21
	8.7.2 Natural Ground	21
	8.7.3 Sulphates.....	22
8.8	Significant Pollutant Linkages	23
9.0	RISK ASSESSMENT	24
9.1	Human Health: Future Site Users.....	24
9.2	Human Health: During Construction.....	24
9.3	Plants.....	24
9.4	Ground Gas	24
9.5	Construction Materials	24
9.6	Controlled Waters	25
9.7	Unexpected Contamination	25
9.8	Disposal of Material.....	25

APPENDICES

- Appendix 1** Exploratory Hole Location Plan, drawing reference 41623/027
- Appendix 2** Trial Pit Logs (TP720 to TP727)
 - Window Sample Logs (WS401 to WS406)
 - Cable Percussion Borehole Logs (BH203 to BH204)
- Appendix 3** Groundwater Monitoring Report
 - Winter 2023/24 Groundwater Monitoring Results
- Appendix 4** Chemical Test Results (23-64744 and 17-19872)
 - Table of Assessment Values
- Appendix 5** Geotechnical Test Results (GEO/39228)

1.0 EXECUTIVE SUMMARY

1. This report presents the findings of a Geotechnical and Geo-environmental Site Investigation carried out by Eastwood Consulting Engineers.
2. The site is part of the wider Finchwood Park Development, accessed off Park Lane, around 1 km to the south of Arborfield Garrison in Berkshire.
3. The site comprises former agricultural land surfaced with grass and scrub vegetation. The Phase 2 site compound and a laydown area are located in the north east and centre of the site respectively.
4. The solid geology is shown to comprise the London Clay Formation. No superficial deposits are indicated to be present.
5. The bedrock is classified as Unproductive Strata and the site does not lie within a groundwater Source Protection Zone.
6. No radon precautions or ground gas protective measures are considered to be required.
7. The ground conditions comprise topsoil over firm to stiff clay deposits of the weathered London Clay Formation which becomes unweathered with depth. Compacted hardcore surfacing was present in the north east and centre of the site where the site compound and lay down areas are located.
8. Groundwater was not encountered during the investigation, however groundwater monitoring has suggested that shallow groundwater is likely to be present, particularly during wetter months.
9. For the majority of the site, traditional strip and trench fill foundations are expected to be appropriate, founded at an expected minimum depth of 900 mm in undisturbed natural clay strata.
10. Foundations will require deepening where within the influence of trees, in accordance with NHBC Standards Chapter 4.2. Heave precautions will be required wherever the foundation depth exceeds 1.5 m due to the influence of past or present trees, or for piled plots within the influence of trees.
11. Any plots near to the perimeter of the site, where mature trees are present, may need to be piled. Analysis has shown that conventional driven piles should be sufficient.

12. It is assumed that precast concrete floors with a minimum 150 mm high ventilated void beneath will be used. The ventilated void height will need to be increased to 250 mm where heave precautions are required.
13. Soakaways are unlikely to be a viable form of surface water drainage due to the presence of cohesive strata.
14. No elevated concentrations of contaminants have been identified within the soil at the site. Therefore, no remedial measures are considered necessary and the topsoil and natural ground across the site are suitable for reuse.
15. It is assumed that the compacted hardcore surfacing will be removed during development at the site. If this is not the case, chemical analysis will be required to ensure it is suitable to remain.
16. No sulphate precautions are required for concrete in contact with the weathered London Clay Formation, however concrete in contact with the unweathered London Clay Formation will require DS-4 AC-4 sulphate precautions.
17. The conclusions made in this report are subject to agreement by the approving bodies and your warranty provider.

2.0 INTRODUCTION

2.1 Terms of Reference

This report presents the findings of a Geotechnical and Geo-environmental Site Investigation carried out by Eastwood Consulting Engineers (ECE) for, and on the instructions of, CALA Homes Thames and Legal & General Homes Limited. Any other parties using the information in this report do so at their own risk and any duty of care is excluded.

2.2 Context

ECE (then Eastwood & Partners) undertook a broader site investigation that encompasses Parcel 4 in 2017. The resulting report, reference CAT/RAN/SAE/41623-002, dated 21 August 2017, should therefore be read in conjunction with this report.

No other intrusive site investigations are known to have been undertaken on the site in the past.

2.3 Aims and Objectives

The aims and objectives of this investigation were as follows.

- Detail the ground conditions and their geotechnical properties enabling outline foundation proposals to be made for the proposed development;
- Carry out tiered risk assessment to establish the likely risks to future receptors, involving the use of generic assessment criteria and where unacceptable risks are identified, site specific assessment criteria within a detailed quantitative risk assessment;
- Identify feasible remediation options if unacceptable risks are highlighted; and
- Develop an appropriate remediation strategy where remediation is required.

2.4 Scope of Investigation

The investigation consisted of intrusive site works and laboratory analysis. The findings were used to test the conceptual model and produce a final risk assessment.

The intrusive works comprised the excavation of trial pits which were excavated to enable:

- Examination of the upper few metres of ground;
- In situ description of soils, enabling any localised lateral and vertical changes in soil conditions to be logged;

- Assessment of any contamination identified using visual and olfactory methods; and
- Collection of soil samples for geotechnical and chemical testing.

Two cable percussion boreholes were also undertaken for the purposes of determining the ground conditions at depth to assist with pile design.

2.5 Limitations of Investigation

This report is based on the assumption that the site will be developed with low-rise conventional housing with private gardens, areas of soft landscaping and associated infrastructure including roads and driveways. It is not thought that ground levels will be modified significantly. If this is not the case, then the advice given in this report may not be appropriate.

Where assessments of site areas affected in particular ways are given, these are approximate. All information, comments and opinions given in this report are based on the ground conditions encountered during the site work, on the results of laboratory testing carried out as part of the investigation and information gained from a geological and historical desk study. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata and water conditions between or below investigation points. It should be noted that groundwater levels vary due to seasonal or other effects, and may at times differ from those measured during the investigation.

This report considers the ground and groundwater and does not cover any buildings or their fabric or the constituents of any existing hardstanding materials. Generally, testing has only been carried out for contaminants identified as potentially present with no assessment made of biological contamination. Risks to ecological receptors, such as bats, have not been considered.

3.0 THE SITE

3.1 Description

Land parcel 4 makes up the south-western section of Phase 2 of the wider Finchwood Park development. It is located around 1 km to the south of Arborfield Garrison in Berkshire. The partially constructed Phase 1 Development is located immediately to the north and east. The site is centred on grid reference 476530, 164348. Access to the site at the time of the most recent site visit is from the west via the haul road connecting the development site entrance and the compound of the phase 2 construction area.

The site has an area of approximately 2.3 hectares and is roughly square on plan. It slopes down to the south east from approximately 64 m AOD in the north west to 59 m AOD in the south east. The site comprises former agricultural land, which as part of the wider development of the site, now includes the Phase 2 site compound in the north east of the site and the groundworks contractors' compound and associated laydown area to the north of the centre of the site. The south eastern quarter of the site has been stripped of vegetation and the surface covering across the remainder of the site is grass and scrub vegetation. A haul road enters the site from the south, leading north, before turning east, separating the south-eastern quarter of the site from the remainder of the site.

The site is bordered by Parcel 5 to the south and the partially constructed Phase 1 development to the north and east. Sheerlands Road and agricultural farmland are located to the west of the site.

The information presented in this report relates solely to Parcel 4, (herein referred to as "The Site"), except where specifically stated otherwise.

4.0 SUMMARY OF PHASE 1 ASSESSMENT

A Phase 1 assessment of the broader site (of which the subject site is a part of) was undertaken as part of our initial wider site investigation in 2017, reference CAT/RAN/SAE/41623-002, and should be read in conjunction with this Phase 2 report. The pertinent points specifically relevant to the Parcel 4 area are summarised in the sections below.

4.1 History

Historical Ordnance Survey maps obtained as part of the Envirocheck Report have been studied to assess the previous use of the site. Copies of the maps are presented in Appendix 2.

4.1.1 The Site

The historical mapping shows that the site has remained undeveloped throughout the course of the mapping period.

4.1.2 The Surrounding Area

The surrounding area predominantly comprises agricultural land, although claypits are located approximately 200 m south west of Parcel 4 and a clay pit and brickworks are shown to the north-east of the site. By the early 20th Century, a brickworks is also present around 250 m south of Hogwood Farm, and gravel pits are shown approximately 150 m south (greater than 250 m away from the current subject site) and 750 m west of Hogwood Farm.

By 1932 Arborfield Remount Depot is labelled around 500 m north east of Parcel 4, although its full extent and proximity to the site is unclear. By 1938 two additional brickworks are shown around 500 m to the north and east of the site, the latter later developed as Hogwood Industrial Estate.

The 1961 historical map shows Arborfield Remount Depot has been renamed Arborfield Garrison, and extended up to the northern boundary of Hogwood Farm.

The 1984 map shows Hogwood Farm Industrial Estate in its current layout around 500 m to the east, with a possible tank immediately to the west. By 1988 the attenuation pond between the two industrial estates is also shown.

4.2 Geology

The site is shown to be underlain by the London Clay Formation. Superficial deposits are not mapped across the site area. No faults are shown to cross the site.

4.3 Hydrogeology

The Envirocheck identifies that the underlying solid bedrock below the site is primarily classified as Unproductive Strata. These are rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow.

The site is not recorded as being within a groundwater Source Protection Zone.

4.4 Hydrology

The nearest surface water feature is a drain located around 275 m to the west of the site.

4.5 Ground Gas

The updated UK Radon maps, issued in December 2022, have been consulted. These confirm that the site is located in a 1km grid square where less than 1% of homes are estimated to lie at or above the action level. Therefore no radon precautions are required at the site.

No landfill sites are identified within 250 m of the site.

A number of infilled ponds are shown on historical maps of the wider Hogwood Farm site and are presumed to have been backfilled. The ponds were small features and are expected to have been shallow, and therefore the risk of significant gas generation and subsequent migration is considered to be low.

There is one area of potentially infilled land identified within 250 m of the site in the Envirocheck. This is located to the north of the site, and is thought to refer to Hogwood Shaw brickworks which were shown to be present on the 1938 historical map. No pits are however, shown in conjunction with this brickworks, but a pond is later shown immediately to the north-west of the brickworks. This is assumed to be the former clay pit. The pond is present on the most recent mapping indicating that it has not been backfilled.

A significant depth of made ground (>2 m) is not anticipated beneath the site.

Ground gas protective measures are therefore not considered to be necessary at this stage.

4.6 Potential Pollutant Linkages

The table overleaf details the possible sources and associated contaminants of concern, pathways and receptors which were identified by the Phase 1 report:

Source	Potential Contaminants	Potential Pathways	Potential Receptors
Made ground	<ul style="list-style-type: none"> Heavy metals/metalloids polycyclic aromatic hydrocarbons (PAHs) Asbestos 	<ul style="list-style-type: none"> Ingestion, inhalation, direct contact 	<ul style="list-style-type: none"> Future site occupants and visitors Site construction workers Plants
		<ul style="list-style-type: none"> Direct contact 	<ul style="list-style-type: none"> Water supply pipes
		<ul style="list-style-type: none"> Migration through ground 	<ul style="list-style-type: none"> Controlled waters
Topsoil	<ul style="list-style-type: none"> Pesticides 	<ul style="list-style-type: none"> Ingestion, inhalation, direct contact 	<ul style="list-style-type: none"> Future site occupants and visitors Site construction workers Plants
Natural ground	<ul style="list-style-type: none"> Naturally occurring contaminants 	<ul style="list-style-type: none"> Ingestion, inhalation, direct contact 	<ul style="list-style-type: none"> Future site occupants and visitors Site construction workers Plants Water supply pipes
Made ground/natural ground	<ul style="list-style-type: none"> Sulphates 	<ul style="list-style-type: none"> Direct contact 	<ul style="list-style-type: none"> Sub-surface concrete structures

5.0 GROUND INVESTIGATION

5.1 Site Works

Eastwood Consulting Engineers (ECE) visited site between 25 and 26 July 2017 and excavated two trial pits (TP12 and TP15) as part of the broader site investigation. A further eight trial pits (TP720 to TP727), six window sample boreholes (WS401 to WS406) and two cable percussion boreholes (BH203 and BH204) were completed between 23 and 24 October 2023.

Copies of all logs are presented in Appendix 2, and their locations are plotted on the Exploratory Hole Location Plan, Drawing number 41623/027A in Appendix 1.

Limited areas of the site were not accessible for the completion of exploratory holes. These were the areas occupied by the site compound in the north east of the site and the compound and laydown area in the centre of the site. Window sample holes were completed in parts of these areas, however due to restricted room and constant plant movements, the full areas could not be accessed during the investigation. The areas not available for investigation represent a small part of the overall site, and due to the consistency of the ground conditions encountered across the site, further investigation of these areas is not considered necessary.

5.2 Laboratory Testing

One sample of natural ground was dispatched for chemical testing following the wider 2017 site investigation. A further eight samples of topsoil and seven samples of natural ground were dispatched for testing in October 2023.

Soil samples were taken in 250 ml amber glass jars and analysed at i2 Group Laboratories, Cambridge in October 2023 and Eurofins Chemtest Laboratories, Newmarket in 2017. In both cases testing was completed using MCERTs accredited methodologies where available. Laboratory testing results are presented in Appendix 4 and discussed further in Section 8.

Sixteen samples of natural clay were dispatched for geotechnical testing at Geolabs Limited in Watford, test results are presented in Appendix 5 and discussed further in Section 7.

6.0 GROUND CONDITIONS

6.1 Surface Covering

Approximately 50% of the site is surfaced with topsoil comprising sandy, occasionally gravelly clay, and frequent rootlets to depths of between 0.2 and 0.5 m below ground level (bgl). The exceptions to this are the compound and laydown areas located in the north east and centre of the site and a haul road running through the south eastern quarter of the site which are surfaced with compacted hardcore.

Reworked topsoil was recorded in TP721 and TP722 in the south east of the site.

6.2 Made Ground

Made ground was encountered in within the site compound and laydown areas (WS401 to WS404) and was generally found to comprise gravelly fine to coarse sand to depths of between 0.35 and 0.5 m bgl. The gravel included concrete, brick, plastic, glass, flint, chert, quartzite and sandstone. Obstructions within the hardcore forced the termination of WS403 and WS404 at 0.5 m.

6.3 Natural Ground

Natural ground of the weathered London Clay Formation was encountered beneath the topsoil or made ground. This generally comprised firm to stiff, orangish brown mottled grey sandy clay. Stiff grey clay representative of the unweathered London Clay Formation was encountered from between 3.1 and 3.35 m bgl, in a small number of window sample holes and trial pits. This was then found to become very stiff in the cable percussion boreholes from between 13 and 14 m bgl and continued to the base of the holes. The trial pits were terminated between 2.7 and 3.4 m bgl, window samples were terminated at between 3 and 4 m bgl (except where obstructions in the hardcore forced termination at 0.5 m) and the boreholes were terminated at 20 m bgl.

6.4 Obstructions

Due to the presence of the site compound and laydown areas located in the centre, north and east of the site, some areas of the site were not accessible for the completion of trial pits.

No subsurface obstructions were encountered during the site investigation.

6.5 Groundwater

Groundwater was not observed in any of the trial pits while they remained open.

Eastwood Consulting Engineers undertook a programme of groundwater monitoring across the wider Hogwood Farm site between July 2018 and June 2019. The results of this were reported on in our Groundwater Monitoring Report, reference 41623/007, dated 21 August 2019. A copy of this report is enclosed in Appendix 3. As part of this, one monitoring well was installed in Parcel 4, WS08. The shallowest groundwater level recorded in WS08 was 0.47 m bgl.

As part of the October 2023 ground investigation works, groundwater monitoring wells were installed in WS401, WS402, WS405 and WS406. A programme of winter groundwater monitoring was then completed. A full copy of the results is included in Appendix 3 and these are summarised in the table below.

Monitoring Well	Water Level (m bgl)						Well Depth (m bgl)
	13/12/23	03/01/24	26/01/24	22/02/24	27/03/24	18/04/24	
WS401	0.4	0.15	0.1	0.1	GL	0.84	2.96
WS402	0.28	GL	0.27	0.1	GL	0.62	2.87
WS405	0.12	GL	0.25	GL	GL	0.64	2.85
WS406	GL	GL	0.35	GL	0.2	0.72	3.99

GL = Ground Level

Considering the above results, it is clear that shallow groundwater is present at the site, often being recorded at ground level across the area of the proposed residential plots. Therefore, groundwater and surface water may impact the excavation of trenches, particularly during wetter months. As such, it is likely that groundwater control measures such as sump and pump may need to be implemented during excavation works.

6.6 Evidence of Contamination

Visual or olfactory evidence of possible contamination was not identified in any of the exploratory holes.

7.0 GEOTECHNICAL APPRAISAL

The site is proposed for development with residential properties of conventional construction.

Our investigations indicate that the ground conditions beneath site are relatively homogenous. They generally comprise topsoil over natural deposits of the weathered London Clay Formation, becoming unweathered with depth. Groundwater was not recorded in any of the trial pits whilst they remained open, however previous groundwater monitoring has indicated the presence of shallow groundwater.

7.1 Laboratory Geotechnical Testing

Eleven samples of the natural cohesive ground from the weathered London Clay Formation were sent for geotechnical laboratory testing following the field work in October 2023. The full results for all geotechnical testing completed to date are included in Appendix 5 and are summarised below.

Exploratory Hole	Depth (m)	Moisture Content	Liquid Limit	0.4 x Liquid Limit	Potentially Desiccated?	Modified Plasticity Index (%)	Volume Change Potential
TP720	1.5	23.5	45	18	N	26	Medium
TP721	1	24.3	44	17.6	N	24	Medium
TP721	2.1	23.2	40	16	N	21	Medium
TP722	0.9	24.3	45	18	N	25	Medium
TP723	1.3	22.3	46	18.4	N	29	Medium
TP723	2.1	25.2	39	15.6	N	18	Low
TP724	1.1	23.2	45	18	N	27	Medium
TP724	2.5	24.7	37	14.8	N	18	Low
TP725	0.9	24.3	40	16	N	20	Medium
TP726	1	23.3	47	18.8	N	28	Medium
TP727	2.6	24.6	41	16.4	N	22	Medium

The samples recorded modified plasticity indices of 18 to 27% which correspond to a low to medium volume change potential. Nine of the eleven samples are indicated to have a medium volume change potential and it is therefore recommended that this is adopted for the cohesive soils across the entire site. None of the samples are indicated to be potentially significantly desiccated as the water content of the samples is greater than 40% of the liquid limit. Previous testing of the unweathered London Clay Formation on adjoining parcels confirms that this also has a medium volume change potential.

Following the cable percussion drilling work in October 2023, four undisturbed U100 samples of the unweathered London Clay Formation were recovered and scheduled for undrained triaxial testing.

Location	Depth (m bgl)	Cell Pressure (kPa)	Deviator Stress (kPa)	Shear Stress (kPa)
BH203	6.0 to 6.45	120	327	164
BH204	9.0 to 9.45	180	386	193
BH203	12 to 12.45	240	541	271
BH204	15 to 15.45	300	311	155

The above results demonstrate a general trend of increasing shear strength with depth, as would be expected based on the logs.

7.2 In-Situ Testing

In-situ hand shear vane testing undertaken on the site in the weathered London Clay Formation during October 2023 recorded shear strength values of between 59 and 113 kN/m², with an average reading of 75 kN/m².

Standard penetration tests (SPTs) were completed every 1.5 m in BH203 to BH204 and every 1 m in WS402 and WS406, the test results are summarised in the table below.

Strata	Average N Value Recorded			
	BH203	BH204	WS402	WS406
Weathered London Clay Formation	21.5	12	8.7	10.3
London Clay <10 m bgl	22.2	20	~	14
London Clay >10 m bgl	33	32.5	~	~

The above table shows that the average N-value increased with depth, as anticipated and in accordance with the engineer's field observations.

The full hand shear vane and SPT results can be seen in the trial pit, window sample and borehole logs included in Appendix 2.

7.3 Foundations

For the majority of the dwellings, it is expected that traditional strip and trench fill foundations, taken onto undisturbed natural non-desiccated cohesive strata of the weathered London Clay Formation, are expected to be appropriate. The geotechnical testing has shown that the soils should be assigned a medium volume change potential and therefore a minimum founding depth of 900 mm

below existing or finished ground level (whichever the deeper) will apply. At this depth an allowable bearing capacity of 125 kN/m² is likely to be achievable.

Foundations within clay soils will need to be deepened in accordance with NHBC Standards, Chapter 4.2 where past, present or proposed trees are within influencing distance of the foundation. Heave precautions should be included where the footing depth due to past or present trees is in excess of 1500 mm or for piled plots within tree influence.

Consideration should be given to tree influence at an early stage. Buildings are likely to need to be piled wherever the depth due to trees exceeds 2.5 m. Piling may also be required where site levels are proposed to be raised, particularly where this also intersects with plots requiring deepening due to trees.

Piling is therefore expected to be required towards the perimeter of the site where mature trees are present. Given the site is generally surfaced with topsoil, and as no significant below ground obstructions were encountered standard driven piles are expected to be appropriate. Specific pile design will need to be undertaken by the piling contractor using the information provided in this report.

Due to the possibility of shallow groundwater, particularly during wetter months, excavations should not be left open for prolonged periods. Methods such as dig and pour or sump and pump may be required to mitigate against shallow groundwater.

7.4 Ground Floors

Where less than 600 mm of made ground is present, ground bearing slabs will be appropriate. Elsewhere, reinforced suspended slabs or precast concrete floors with a minimum 150 mm high ventilated void should be used.

If the footings require heave precautions due to trees, a precast concrete floor with a ventilated void will be required. This void should be a minimum of 250 mm high.

7.5 Superstructure Precautions

No additional superstructure precautions will be required due to the ground conditions encountered.

7.6 Excavation Problems

All of the trial pits remained dry and stable whilst open. Nonetheless, support will be required in accordance with current Health & Safety Regulations wherever access is required to trenches deeper than 1.2 m or less where there is risk of collapse.

7.7 Obstructions

Window sample holes WS403 and WS404 both refused within the made ground and could not be progressed any further. No further obstructions were encountered during the investigation.

7.8 Roads

A CBR value of at least 2% is likely to be appropriate for road design. The ground should be assumed to be frost susceptible and a minimum construction thickness of 450 mm will therefore apply. It is recommended that CBR tests are undertaken along any proposed roads prior to construction so that more accurate CBR values can be obtained.

7.9 Surface Water Drainage

Given the cohesive nature of the natural strata encountered, surface water drainage via ground soakage is unlikely to be viable for the proposed development.

8.0 REFINEMENT OF OUTLINE CONCEPTUAL MODEL

8.1 Source Characterisation

An outline conceptual model, detailing the possible sources and associated contaminants of concern, potential pathways and receptors identified in the phase 1 study was detailed in section 4.6.

This section of the report documents the works undertaken to obtain information to test and refine this model enabling a risk assessment to be produced and, where significant risks are expected, remediation recommendations.

8.2 Ground Conditions

Our investigations indicate that approximately 50% of the site is surfaced with topsoil while compacted hardcore was identified within the compound and laydown areas located within the site. Any surface covering is underlain by the weathered London Clay Formation which becomes unweathered with depth.

8.3 Gas Precautions

No radon precautions are required at the site and no landfill sites were identified within 250 m.

Made ground was not encountered. One area of potentially infilled ground is indicated to be located to the north of the site, and is thought to refer to Hogwood Shaw brickworks, this is assumed to be the former clay pit. However, this is not considered to present a risk of gas generation and migration. Therefore, ground gas precautions are not considered to be necessary in the construction of new dwellings.

8.4 Unexpected Contamination

Visual and olfactory evidence of possible significant contamination was not encountered in any of the exploratory holes.

8.5 Chemical Testing

Over the two phases of investigation eight samples of topsoil and eight of natural ground have been sent for chemical testing. Each of the samples was analysed for the suite of contaminants listed overleaf.

Samples of the hardcore surfacing were not selected for chemical analysis as this material has been placed to provide a temporary surfacing in the compound areas and will be removed prior to development. If this is not the case, chemical analysis of this material will be required.

Contaminant Type	Actual Contaminants
Metals/Metalloids	Arsenic, cadmium, chromium, lead, mercury, nickel, selenium, copper and zinc
pH	pH
PAHs	Speciated PAH
Sulphates*	Water soluble sulphate, acid soluble sulphate, total sulphur

*made and natural ground samples only

Two topsoil samples were also scheduled for pesticide testing and three natural ground samples were scheduled for fully fractionated petroleum hydrocarbon (TPH CWG), benzene, toluene, ethylbenzene, xylenes (BTEX) and methyl tert-butyl ether (MTBE) testing.

Testing was undertaken by Chemtest, using MCERTs accredited methodologies, where available.

8.6 Assessment Criteria

As the site is to be developed with conventional dwellings with private gardens the assessment criteria for 'residential end-use with homegrown produce' have been adopted.

Tables detailing the relevant assessment concentrations used are included in Appendix 4.

8.7 Chemical Test Results

Copies of the chemical test results (23-64744 and 17-19872) are included in Appendix 4. Some preliminary risk assessment is undertaken in this section of the report where determinants can be readily discounted.

8.7.1 Topsoil

None of the samples of topsoil recorded any elevated concentrations of determinants when compared to the residential with home grown produce assessment values.

Pesticides were recorded to be below the detection limit in the samples tested.

8.7.2 Natural Ground

None of the natural ground samples recorded elevated concentrations of any of the determinants when compared to the residential with homegrown produce assessment values.

The samples tested for TPH CWG, BTEX and MTBE all recorded results below the test detection limits.

8.7.3 Sulphates

In accordance with BRE Special Digest 1, the site comes under the classification of 'brownfield' and groundwater is expected to be mobile.

The following table displays the results of the made ground and natural ground samples tested:

Weathered London Clay Formation	Range of Results	Characteristic Value	Sulphate Classification
Water Soluble Sulphate (mg/l)	2.7 to 27.7	19.55	DS-1 AC-1
Total Sulphur (%)	<0.005 to 0.008	0.008	
Total Potential Sulphate (%)	<0.015 to 0.024	0.024	
pH	6.9 to 7.6	6.9	
Unweathered London Clay Formation	Range of Results	Characteristic Value	Sulphate Classification
Water Soluble Sulphate (mg/l)	200 to 640	555	DS-5 AC-5
Total Sulphur (%)	0.49 to 0.84	0.84	
Total Potential Sulphate (%)	1.47 to 2.52	2.52	
pH	8.1 to 8.5	8.1	

Based on both the water soluble sulphate and total potential sulphate values, a design sulphate class of DS-1 would be appropriate for the weathered London Clay Formation soils, present to depths of between around 3.1 and 3.35 m bgl. The pH values determine an ACEC class of AC-1 to be appropriate and as such no sulphate precautions would be required for below ground concrete in contact with shall natural ground only.

The total potential sulphate values in the underlying unweathered London Clay Formation, dictate a design sulphate class of DS-5 and ACEC class of AC-5 to be required. However, within BRE SD1 it is stated that '*a limitation can be applied if the sulfate class for the total potential sulfate is initially found to be Sulfate Class 5, but sulfate classes for groundwater and the water extracts tests are Sulfate Class 3 or less. In this case, the Design Sulfate Class for the site location can be limited to DS-4.*' Therefore, where the concrete is in contact with deeper natural ground, DS-4 AC-4 sulphate precautions will need to be incorporated.

No made ground was encountered at the site, however should any made ground be encountered, where below ground concrete is in contact with made ground a minimum design sulphate class of DS-2 and ACEC class of AC-2 should be adopted.

8.8 Significant Pollutant Linkages

The significant pollutant linkages consequently identified are thus documented in the following table.

Source	Pathway	Receptor
Sulphates in the unweathered London Clay Formation.	Direct contact	Below ground concrete

9.0 RISK ASSESSMENT

9.1 Human Health: Future Site Users

None of the samples of topsoil or natural ground recorded elevated concentrations of any of the determinants when compared to the residential with homegrown produce assessment values. Therefore, the topsoil and natural ground can be considered chemically and physically suitable for reuse on site.

It is assumed that all hardcore surfacing will be removed prior to completion of development at the parcel. If this is not the case and any remains in place, this will need to be tested to ensure its suitability.

9.2 Human Health: During Construction

Groundworkers employed during the construction phase of the development are most at risk of harm due to them having direct contact with the soils. However, the contact is generally of short duration, and all competent groundworkers will be aware of the potential risks associated with contact with potentially contaminated soils. Therefore, the overall risk to the health of construction workers is considered to be low.

Normal site procedures, such as the wearing of gloves when handling soils and the washing of hands prior to eating, should be implemented at all times.

9.3 Plants

No samples recorded any phytotoxic concentrations of contaminants.

9.4 Ground Gas

Radon precautions are not required.

Ground gas precautions are not considered necessary.

9.5 Construction Materials

Based upon the results of the pH and sulphate testing discussed in Section 8, no sulphate precautions will be required for below ground concrete in contact with the weathered London Clay Formation only. However, where below ground concrete is in contact with the unweathered London Clay Formation (present from between around 3.1 and 3.35 m bgl) a sulphate class of DS-4 and ACEC class of AC-4 will be required.

Where made ground is present a minimum sulphate class of DS-2 and ACEC class of AC-2 should be adopted.

The results of the chemical testing will need to be forwarded to the water company so that appropriate water supply pipes can be selected.

9.6 Controlled Waters

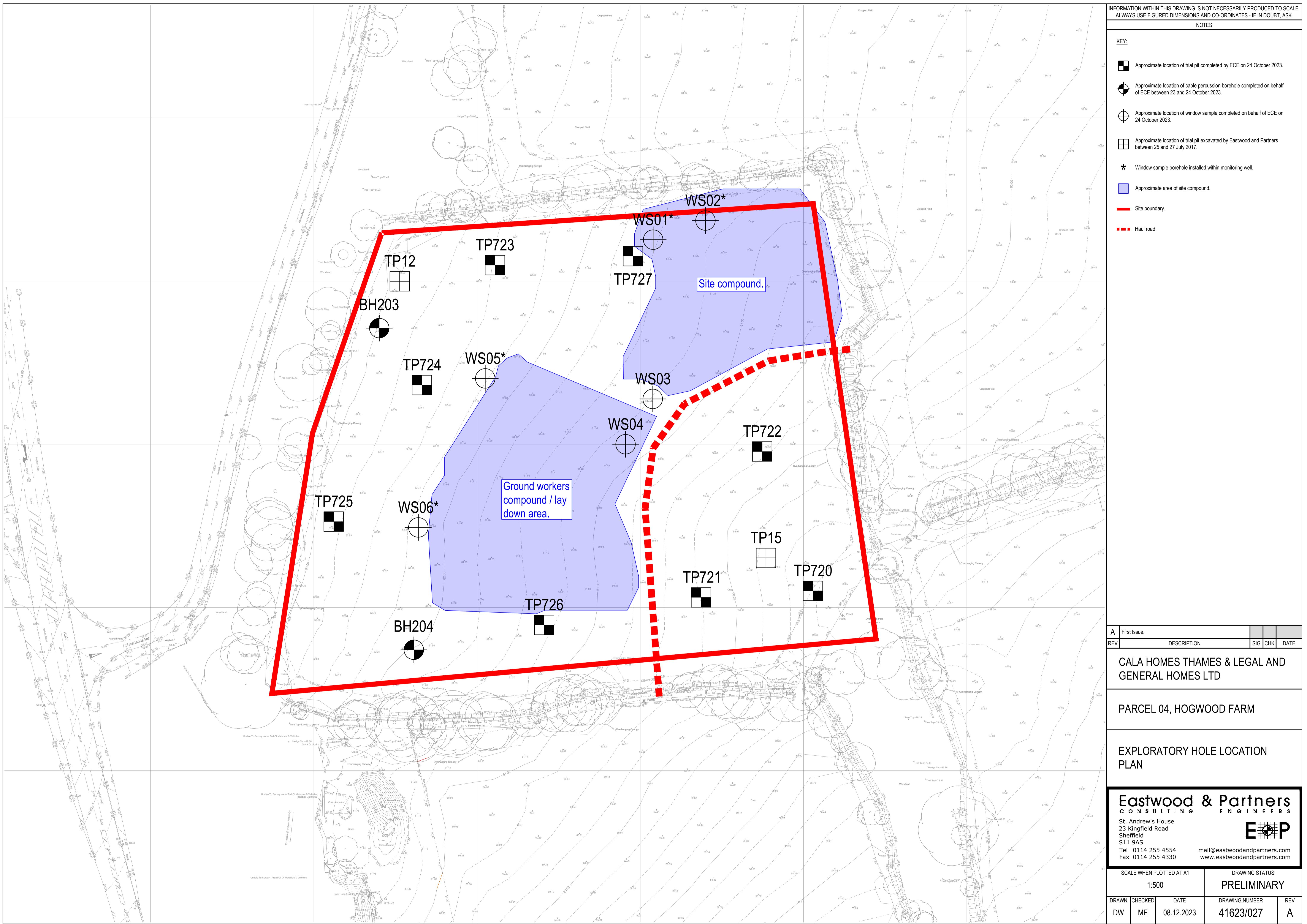
The underlying bedrock is primarily classified as unproductive strata. Groundwater has not been encountered as part of this investigation and no significantly elevated concentrations of contaminants have been detected.

Therefore, no significant risk to controlled waters has been identified during the course of this investigation.

Standard good site practice during the construction phase of the development must still be adhered to in terms of surface water run-off control measures, to ensure there is no risk to controlled waters.

9.7 Unexpected Contamination

Should any unusual, brightly coloured, ashy, fibrous or odorous material or material suspected of containing asbestos be encountered during construction this should be brought to the attention of the site staff and investigated.


9.8 Disposal of Material

If material needs to be removed, it should be taken to a suitably licensed landfill or waste treatment facility. The costs of disposal and landfill tax can be substantial. The disposal of material should therefore be seen as a last resort with options such as treatment and reuse either on-site or off-site considered where possible.

The category of landfill which can accept the waste (inert, non-hazardous or hazardous) would need to be determined and will also have a significant effect on the costs. Additional testing may be required by the landfill operator and the acceptance of material is generally at their discretion.

Appendix 1

Exploratory Hole Location Plan, drawing reference 41623/027

Appendix 2

Trial Pit Logs (TP12, TP15 and TP720 to TP727)

Window Sample Logs (WS401 to WS406)

Cable Percussion Borehole Logs (BH203 to BH204)

Project Name Hogwood Farm				Project No. 41623	Co-ords: - Level: -	Date 25/07/2017
Location: Arborfield				Dimensions: - Depth 2.30m		Scale 1:25
Client: Legal and General Homes						Logged By SAE
Samples & In Situ Testing		Depth (m)	Level (m AOD)	Legend	Stratum Description	
Depth (m)	Type	Results				
0.10	D				TOPSOIL: Crop over brown silty CLAY with rootlets.	
		0.40			Stiff orange brown silty CLAY. Friable in upper 0.5 m.	
0.60	D					
		2.30			Trialpit Complete at 2.30 m	
Remarks:						
Groundwater: None encountered						AGS

Project Name Hogwood Farm				Project No. 41623	Co-ords: - Level: -	Date 25/07/2017
Location: Arborfield				Dimensions: - Depth 2.70m		Scale 1:25
Client: Legal and General Homes						Logged By SAE
Samples & In Situ Testing		Depth (m)	Level (m AOD)	Legend	Stratum Description	
Depth (m)	Type	Results				
0.10	D				TOPSOIL: Grass over brown silty CLAY with rootlets.	
0.50	D		0.35		Stiff orange brown silty CLAY. Friable in upper 0.5 m.	
0.90	IPP 1	450				
0.90	IPP 2	375				
0.90	IPP 3	400				
1.20	D					
			2.70		Trialpit Complete at 2.70 m	
Remarks: IPP= Penetrometer readings given as unconfined compressive strength in kN/m ²						
Groundwater: None encountered						

Project Name Hogwood Farm				Project No. 41623	Co-ords: - Level:	Date 24/11/2023	
Location: Arborfield				Dimensions: 1.50m Depth: 3.20m		Scale 1:25	
Client: Legal & General Homes				0.50m		Logged ME	
Samples & In Situ Testing			Depth (m)	Level (m AOD)	Legend	Stratum Description	
0.30			0.35			TOPSOIL: Soft to firm dark greyish brown slightly sandy CLAY with occasional rootlets.	
1.50						Firm orangish brown mottled grey slightly sandy CLAY .	
2.00	HVP=113 HVP=87 HVP=89		2.00			Stiff orangish brown mottled grey slightly sandy CLAY .	
2.00							
2.00			3.20			Trialpit Complete at 3.200m	
Remarks:							
Stability: Good							

Project Name Hogwood Farm				Project No. 41623	Co-ords: - Level:	Date 24/11/2023			
Location: Arborfield				Dimensions: 1.50m Depth: 0.50m		Scale 1:25			
Client: Legal & General Homes				2.80m		Logged ME			
Samples & In Situ Testing			Depth (m)	Level (m AOD)	Legend	Stratum Description			
0.20			0.50	0.50		REWORKED TOPSOIL: Soft to firm dark greyish brown slightly sandy CLAY with occasional rootlets.			
0.90						Firm orangish brown mottled grey slightly sandy CLAY.			
1.30									
						Trialpit Complete at 2.800m			
Remarks:									
Stability: Good									

Project Name Hogwood Farm		Project No. 41623	Co-ords: - Level:	Date 24/11/2023
Location: Arborfield		Dimensions: 1.50m		Scale 1:25
Client: Legal & General Homes		Depth: 0.50m	3.00m	Logged ME
Samples & In Situ Testing				
Depth (m)	Type	Results	Depth (m)	Level (m AOD)
0.15			0.35	
1.30				
2.10				
2.10				
2.10				
2.40				
		HVP=59 HVP=62 HVP=73	2.30	
			3.00	
<p>Stratum Description</p> <p>TOPSOIL: Brown very sandy CLAY.</p> <p>Firm orangish brown slightly sandy, locally sandy, CLAY .</p> <p>Stiff orangish brown mottled grey slightly sandy CLAY.</p> <p>Trialpit Complete at 3.000m</p>				
Remarks:				
Stability: Good				

Project Name Hogwood Farm		Project No. 41623	Co-ords: - Level:	Date 24/11/2023
Location: Arborfield		Dimensions: 1.50m		Scale 1:25
Client: Legal & General Homes		Depth: 3.20m	0.50m	Logged ME
Samples & In Situ Testing				
Depth (m)	Type	Results	Depth (m)	Level (m AOD)
0.15			0.20	
0.50				
0.90				
1.60				
1.60				
1.60		HVP=59 HVP=76 HVP=76		
2.50				
2.50				
2.50		HVP=59 HVP=67 HVP=73		
			3.10	
			3.20	
Remarks: Stability: Good				

Project Name Hogwood Farm				Project No. 41623	Co-ords: - Level:	Date 24/11/2023
Location: Arborfield				Dimensions: Depth: 3.00m	1.50m 0.50m	Scale 1:25
Client: Legal & General Homes						Logged ME
Samples & In Situ Testing		Depth (m)	Level (m AOD)	Legend	Stratum Description	
Depth (m)	Type	Results				
0.15			0.30		TOPSOIL: Brown very sandy slightly gravelly CLAY. Gravel is subangular fine to coarse flint.	
0.70					Firm orangish brown sandy CLAY.	
1.00						1
1.10						
1.10						
1.10						
2.60			2.70			2
2.60						
2.60						
		HVP=60 HVP=72 HVP=89				
		HVP=73 HVP=73 HVP=78	3.00		Stiff orangish brown sandy CLAY.	
					Trialpit Complete at 3.000m	3
						4
Remarks:						
Stability: Good						

Project Name Hogwood Farm		Project No. 41623	Co-ords: - Level:	Date 24/11/2023
Location: Arborfield		Dimensions: 1.50m		Scale 1:25
Client: Legal & General Homes		Depth: 0.50m	3.00m	Logged ME
Samples & In Situ Testing				
Depth (m)	Type	Results	Depth (m)	Level (m AOD)
0.20			0.40	
1.00				
2.60				
2.80				
3.00				
<p>Stratum Description</p> <p>TOPSOIL: Brown very sandy slightly gravelly CLAY. Gravel is subangular fine to coarse flint.</p> <p>Firm orangish brown sandy CLAY.</p> <p>Stiff orangish brown sandy CLAY.</p> <p>Trialpit Complete at 3.000m</p>				
Remarks:				
Stability: Good				

Project Name Hogwood Farm				Project No. 41623				Co-ords:				Borehole No. WS404			
Location: Arborfield								Level:				Hole Type WS			
Client: Legal & General Homes								Dates: 24/10/2023				Sheet 1 of 1			
Well	Water Strikes	Sample and In Situ Testing			Depth (m)	Level (m)	Legend	Stratum Description							
		Depth (m)	Type	Results	0.50			MADE GROUND: Grey and black gravelly fine to coarse SAND. Gravel is angular to sub angular fine to coarse of concrete, brick, plastic, glass, flint, chert, quartzite and sandstone.							
								End of Borehole at 0.500m							
		Type	Results												
				</											

Borehole Log

Borehole No.

BH203

Sheet 1 of 2

Project Name: Hogwood Farm

Project No.
41623

Co-ords: -

Hole Type
CP

Location: Arborfield

Level:

Scale
1:50

Client: Legal & General Homes

Dates: 23/10/2023 - 23/10/2023

Logged By
ME

Well	Water Strikes	Samples and In Situ Testing			Depth (m)	Level (m)	Legend	Stratum Description	1
		Depth (m)	Type	Results					
					0.10			TOPSOIL: Soft brown sandy CLAY. Stiff brown mottled grey sandy CLAY. (Weathered London Clay Formation)	
		1.20		N=22 (3,4/5,5,6,6)					1
		2.00		N=25 (4,5/6,6,6,7)					2
		3.00		N=23 (3,4/5,6,6,6)					3
		4.00		N=16 (2,2/3,4,4,5)	4.00			Stiff grey silty sandy CLAY. (London Clay Formation)	4
		5.00		N=18 (2,3/3,4,5,6)					5
		7.00		N=20 (2,3/4,4,6,6)					6
		8.00		N=24 (3,4/5,6,6,7)					7
		9.00		N=24 (3,4/5,6,6,7)					8
		10.00		N=25 (3,4/5,6,7,7)					9
									10

Continued on next sheet

Remarks

Borehole Log

Borehole No.

BH204

Sheet 1 of 2

Project Name: Hogwood Farm

Project No.
41623

Co-ords: -

Hole Type
CP

Location: Arborfield

Level:

Scale
1:50

Client: Legal & General Homes

Dates: 23/10/2023 - 24/10/2023

Logged By
ME

Well	Water Strikes	Samples and In Situ Testing			Depth (m)	Level (m)	Legend	Stratum Description	
		Depth (m)	Type	Results					
					0.30			TOPSOIL: Soft brown sandy CLAY.	
		1.20		N=11 (1,2/2,3,3,3)				Firm brown mottled grey sandy CLAY. (Weathered London Clay Formation)	1
		2.00		N=10 (1,2/2,2,3,3)					2
		3.00		N=15 (2,2/3,4,4,4)					3
		4.00		N=16 (2,3/3,4,4,5)	3.80			Stiff grey silty sandy CLAY. (London Clay Formation)	4
		5.00		N=17 (2,3/3,4,5,5)					5
		6.00		N=20 (2,3/4,5,5,6)					6
		7.00		N=21 (3,3/4,5,6,6)					7
		8.00		N=22 (3,4/4,5,6,7)					8
		10.00		N=25 (3,4/5,6,7,7)					9
									10

Continued on next sheet

Remarks

Appendix 3

Groundwater monitoring report

Winter 2023/24 Groundwater Monitoring Results

Nick Jordan
 Legal & General Homes Communities
 One Coleman Street
 London
 EC2R 5AA

CAT/RAN/41623-007

21 August 2019

Dear Nick,

Hogwood Farm, Arborfield – Groundwater Monitoring Report

We are writing to report on the groundwater monitoring which was undertaken at this site between July 2018 and June 2019.

Monitoring visits

Monthly visits were undertaken by E&P during which, monitoring of the water depth in each of the twenty-two installed monitoring wells was undertaken. WS22, located in the SANG area in the southern part of the site could not be located and was not monitored during any of the visits. All remaining wells (WS1 to WS21 and WS23) were monitored on at least one occasion. The occasions during which monitoring could not be undertaken are listed in the table below, along with the corresponding reasons.

Monitoring well	Dates not monitored	Reason
WS2	June 2019	Well destroyed/buried by ongoing construction works in the vicinity
WS4	July to August 2018	Could not locate
WS11	December 2018 to June 2019	Well destroyed/buried during archaeological works in the vicinity
WS15	June 2019	Well monitored but found to be dry and silted up to 1.15 m
WS22	All	Could not locate well, suspect it was not installed
WS23	December 2018 to June 2019	Well destroyed/buried during archaeological works in the vicinity

In addition to the above, no monitoring was undertaken during November 2018.

Monitoring Results

The monitoring commenced in July 2018 where the water level was recorded to be between 1.2 m and 2.1 m below ground level (bgl) across the site. The water levels then dropped to

their deepest in September 2018 where they were found to be between 1.2 m and 2.7 m bgl. The levels then rose to a peak in March 2019 where the levels were found to be between 0.0 m and 0.96 m bgl. As expected, the levels then fell towards June 2019, although small rises were recorded in a few wells between May and June.

A copy of the spreadsheet outlining the monitoring results is attached along with a graph demonstrating the annual cyclical nature of the water levels.

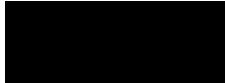
Interpretation of Results

From the results recorded we have produced two plans showing the groundwater contours across the site;

- Drawing 41623/005 – Groundwater Monitoring Locations with Highest Water Depths; and
- Drawing 41623/006 – Groundwater Monitoring Locations with Lowest Water Depths

Copies of the plans are enclosed. These both show a similar trend with water levels being highest in the north west and north east, falling south east and south west respectively, towards the centre of the southern area of the site.

The enclosed Ordnance Survey (OS) plan shows a large number of surface watercourses and ponds both on the site and in the surrounding area. The OS extract which covers a wider area also shows a large number of surface water features, including the Blackwater River located around 550 m south of the site. A surface water drain/stream is indicated to run through the site, exiting at the centre of the southern boundary of the site. This then turns south west and flows directly to the Blackwater River. This is therefore consistent with the contours plotted from the water monitoring, which indicate the water levels to fall towards the drain/stream.


The elevation of the site is between around 52 m AOD in the south and east to around 60 m AOD in the north. The Blackwater River lies at an elevation of around 50 m AOD. It is therefore not unexpected that the groundwater is encountered at shallow depth below the site. The water depths recorded are therefore considered to represent the true groundwater level, and not a perched water table.

Conclusion

Water monitoring of twenty-two monitoring wells across the site over twelve months between July 2018 and June 2019 has demonstrated an annual cyclical pattern with water levels being

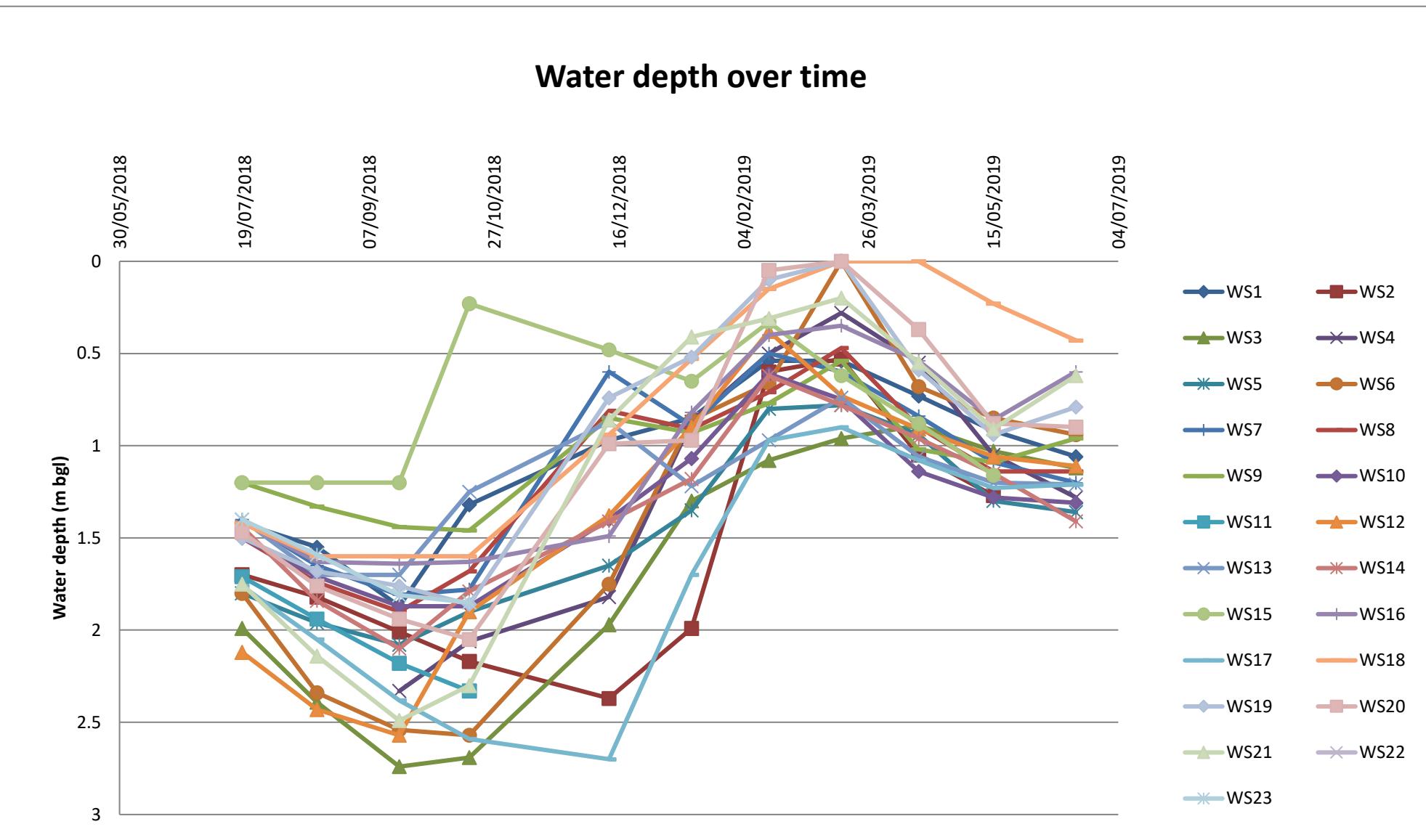
shallowest towards the end of the winter period/beginning of spring and deepest towards the end of the summer period/beginning of autumn. The water levels were observed to be relatively shallow, with water recorded at the surface on a few occasions in a small number of wells. Contour plans have been produced which indicate the groundwater is flowing towards a surface water drain/stream which exits the centre of the southern boundary of the site and flows towards the Blackwater River. The values recorded are considered to be representative of the true groundwater, and not a perched water table.

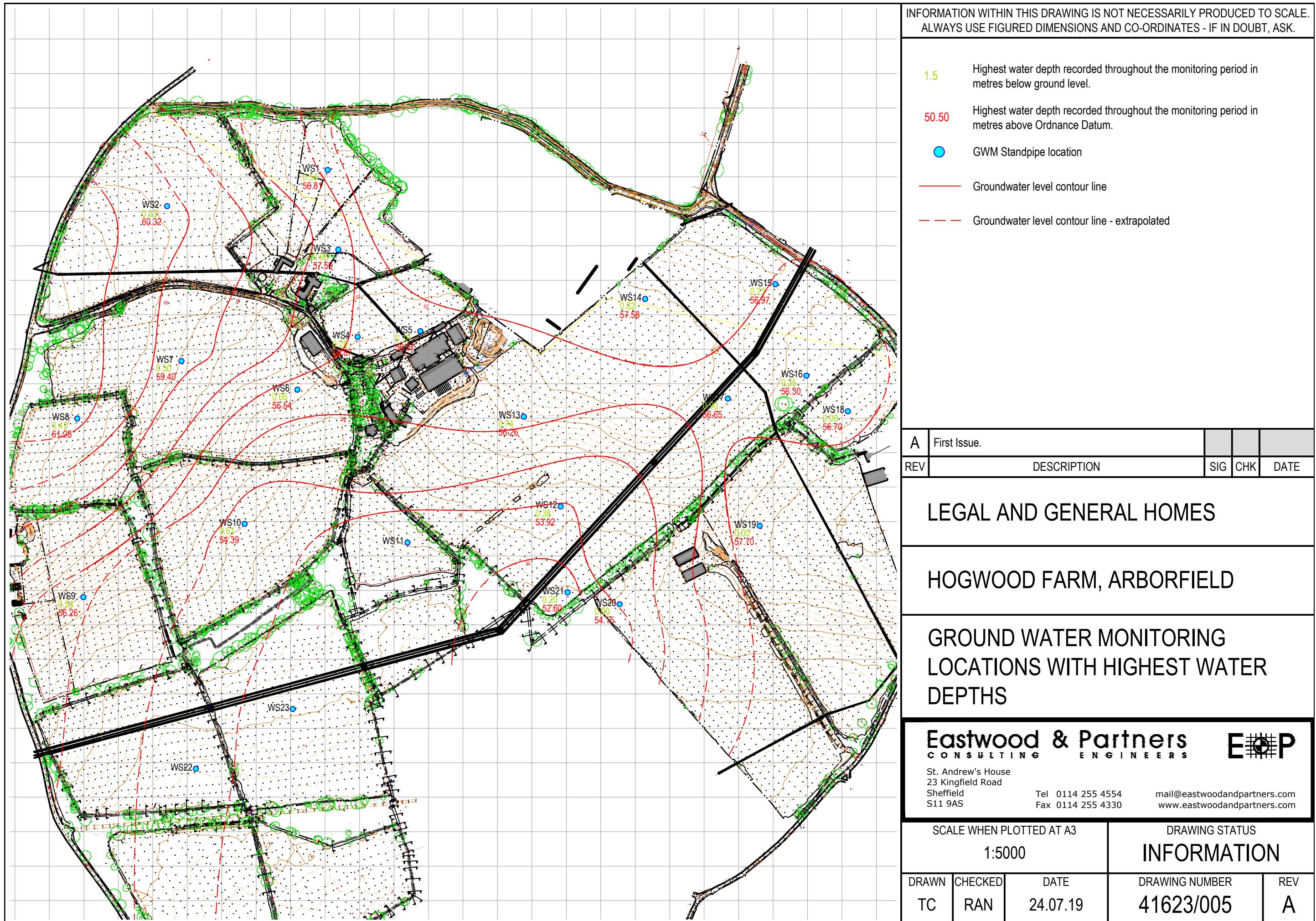
Yours sincerely

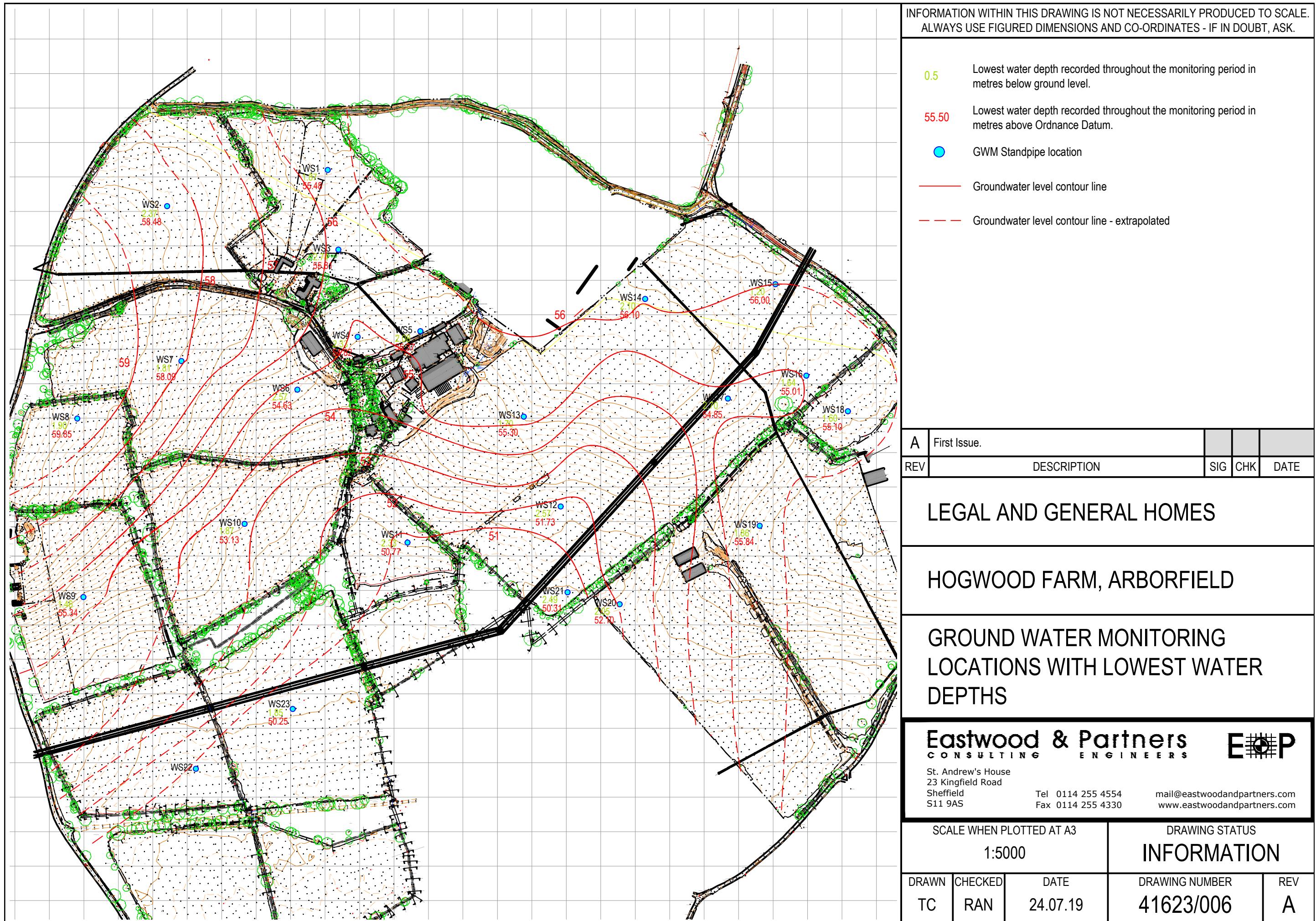
A solid black rectangular box used to redact a signature.

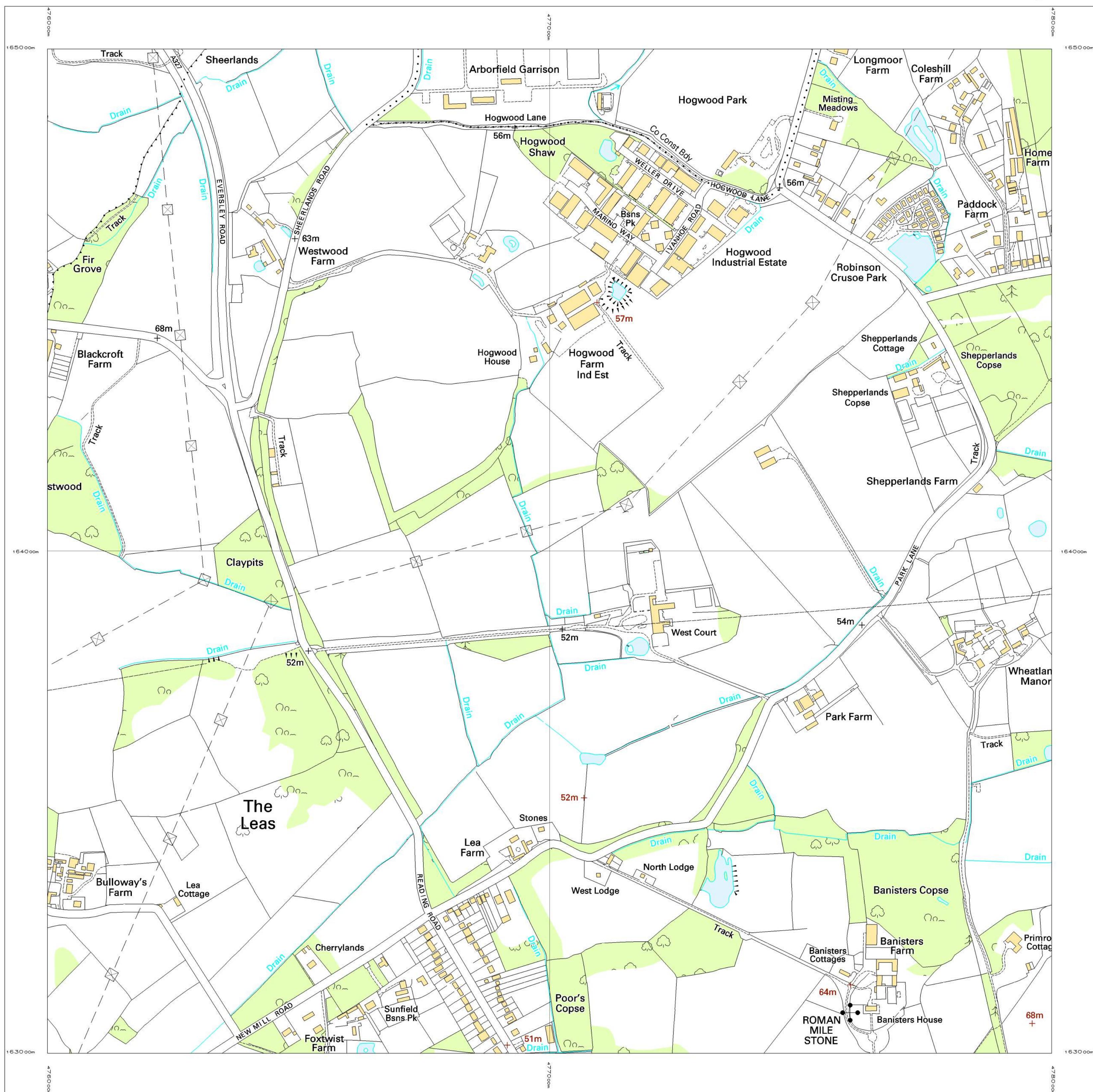
Catherine Topliss

Enc. Monitoring results spreadsheet
Graph of monitoring results
Drawings 41623/005 and 41623/006
Ordnance Survey Plan and Ordnance Survey Extract


Groundwater Monitoring Results Table


Monitoring well	Water level (mbgl)											Depth (m bgl)
	18/07/2018	17/08/2018	19/09/2018	17/10/2018	12/12/2018	14/01/2019	14/02/2019	15/03/2019	15/04/2019	15/05/2019	17/06/2019	
WS1	1.42	1.55	1.87	1.32	0.97	0.85	0.54	0.54	0.73	0.92	1.06	2.9
WS2	1.7	1.82	2.01	2.17	2.37	1.99	0.6	0.53	1.05	1.27		2.8
WS3	1.99	2.39	2.74	2.69	1.97	1.3	1.08	0.96	0.89	1.03	1.12	3
WS4			2.33	2.06	1.82	0.87	0.5	0.28	0.55	1.05	1.28	3.7
WS5	1.8	1.96	2.08	1.9	1.65	1.35	0.8	0.78	0.94	1.3	1.36	3.6
WS6	1.8	2.34	2.54	2.57	1.75	0.86	0.66	0	0.68	0.85	0.94	3.8
WS7	1.4	1.65	1.81	1.78	0.6	0.89	0.5	0.6	0.84	1.09	1.2	3.6
WS8	1.5	1.74	1.9	1.68	0.81	0.91	0.71	0.47	0.9	1.14	1.14	2.8
WS9	1.2	1.33	1.44	1.46	0.85	0.93	0.77	0.54	1.02	1.09	0.96	3.9
WS10	1.5	1.71	1.87	1.87	1.4	1.07	0.61	0.75	1.14	1.28	1.31	2.8
WS11	1.71	1.94	2.18	2.33								2.5
WS12	2.12	2.43	2.57	1.9	1.38	0.9	0.38	0.73	0.91	1.06	1.11	2.9
WS13	1.4	1.7	1.7	1.25	0.87	1.22	0.97	0.74	1.06	1.2	1.21	1.8
WS14	1.44	1.84	2.1	1.79	1.41	1.18	0.62	0.78	0.96	1.15	1.41	2.9
WS15	1.2	1.2	1.2	0.23	0.48	0.65	0.33	0.62	0.88	1.16		1.3
WS16	1.41	1.63	1.64	1.63	1.49	0.82	0.4	0.35	0.54	0.86	0.6	1.6
WS17	1.76	2.05	2.38	2.59	2.7	1.7	0.97	0.9	1.08	1.23	1.21	2.7
WS18	1.42	1.6	1.6	1.6	0.94	0.53	0.15	0	0	0.23	0.43	2.7
WS19	1.5	1.68	1.76	1.86	0.74	0.52	0.1	0	0.59	0.94	0.79	3.5
WS20	1.47	1.76	1.94	2.05	0.99	0.97	0.05	0	0.37	0.88	0.9	2.9
WS21	1.75	2.14	2.49	2.3	0.86	0.41	0.31	0.2	0.55	0.91	0.62	3.3
WS22												3.6
WS23	1.4	1.59	1.81	1.85								2.9


17/06/2019


WS2 - Destroyed/buried

WS15 - Dry (silted up to 1.15 m)

Plotted 06 Nov 2009 from Ordnance Survey
digitally derived data.

Produced using significant survey information
from Ordnance Survey large scales digital data,
and incorporated into OS Landplan Nov 2008.

© Crown copyright 2009.

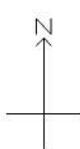
Reproduction in whole or in part is prohibited without
the prior written permission of Ordnance Survey.

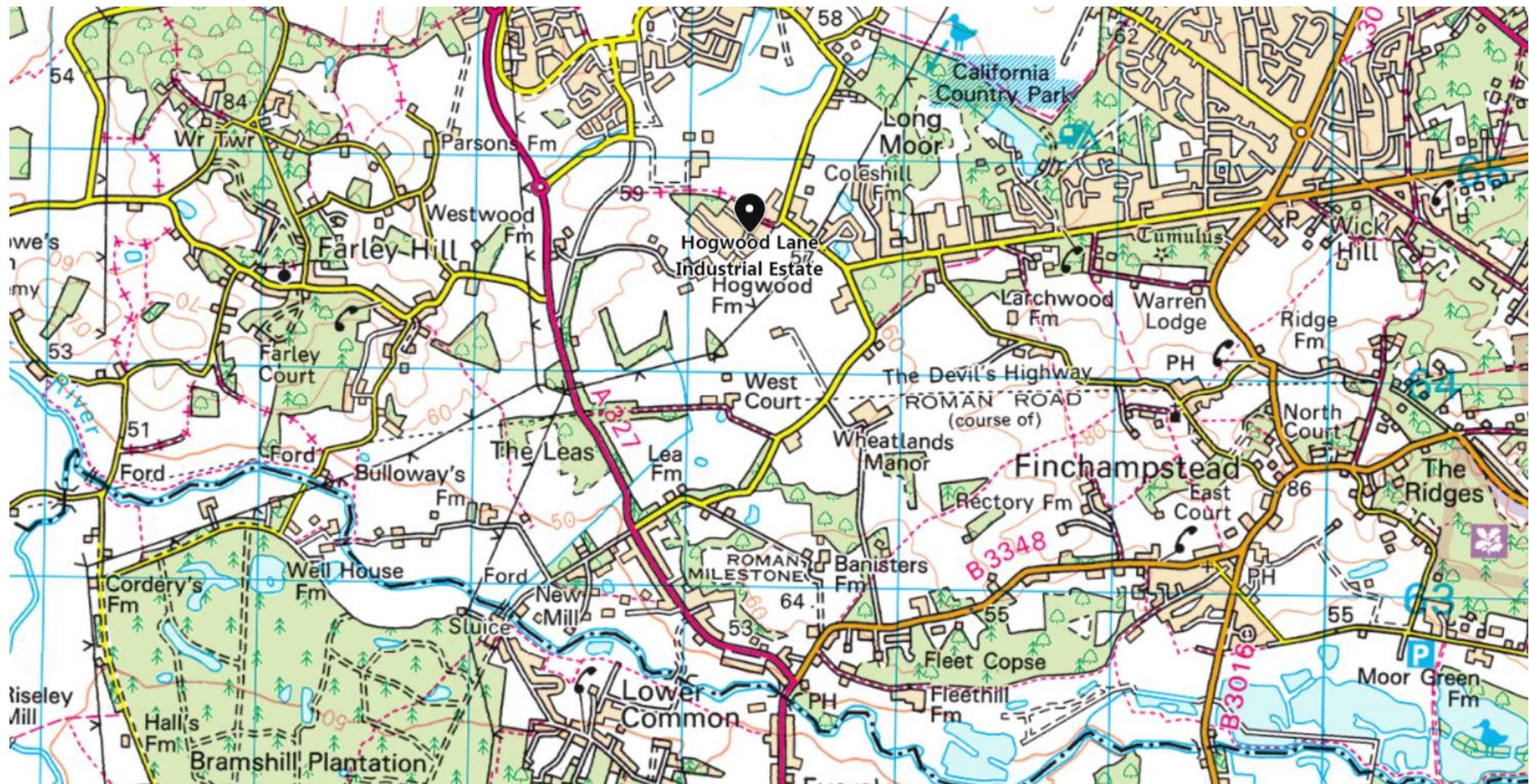
Administrative boundaries revised to Oct 2008.

Additional boundaries information:

This OS Landplan plot is enlarged from derived
mapping produced at 1:10000 scale.

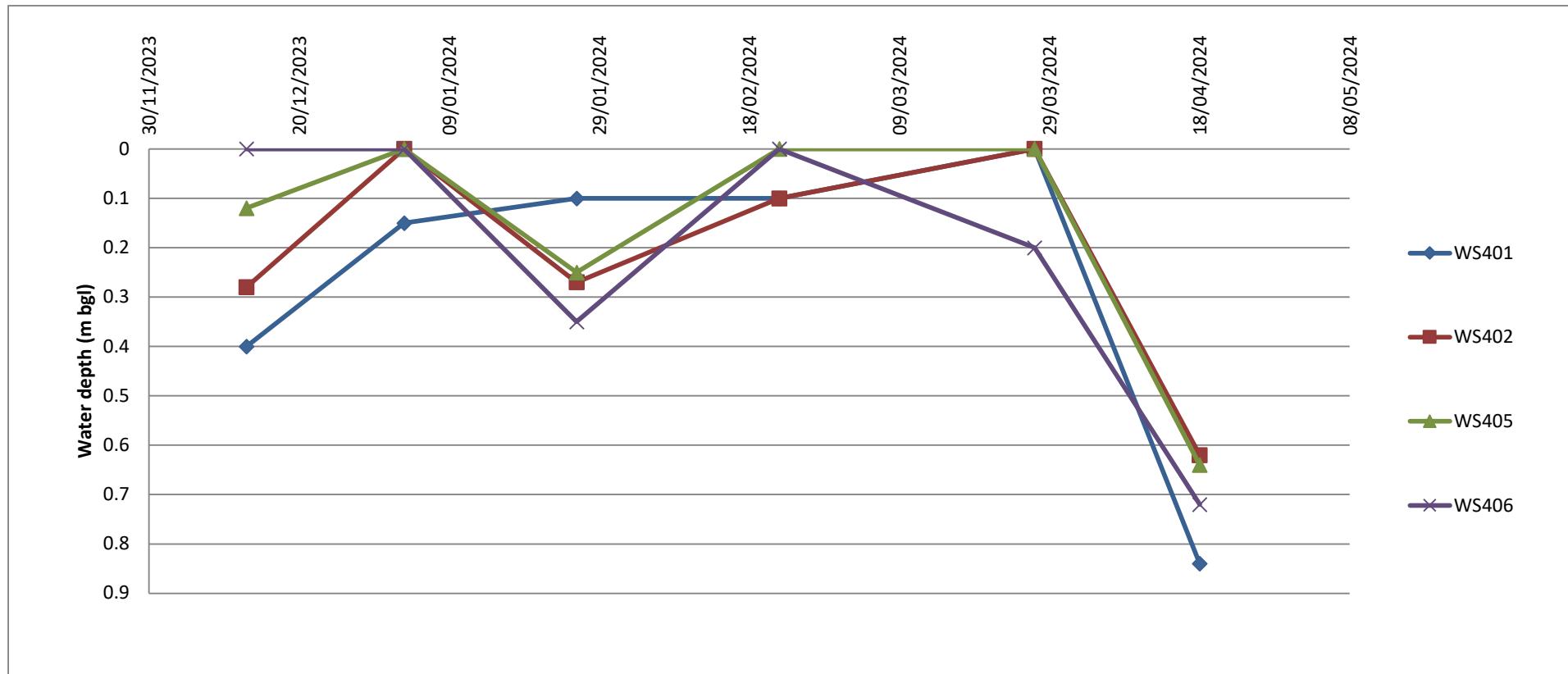
Heights are given in metres above Newlyn Datum.
The representation of a road, track or
path is no evidence of a right of way.


The alignment of tunnels is approximate.


An OS Landplan symbols leaflet is available
on request from Ordnance Survey Mapping and
Data Centres.

Ordnance Survey, the OS Symbol and OS Landplan
are registered trade marks of Ordnance Survey,
the national mapping agency of Great Britain.

100 50 0 100 200 300 400 500
Metres


Scale 1:5000

Winter Groundwater Monitoring Results

Monitoring well	Water level (mbgl)						Depth (m bgl)	Final depth (m bgl)
	13/12/2023	03/01/2024	26/01/2024	22/02/2024	27/03/2024	18/04/2024		
WS401	0.4	0.15	0.1	0.1	0	0.84	3	2.96
WS402	0.28	0	0.27	0.1	0	0.62	3	2.87
WS405	0.12	0	0.25	0	0	0.64	4	2.85
WS406	0	0	0.35	0	0.2	0.72	4	3.99

Appendix 4

Chemical Test Results (23-64744 and 17-19872).

Table of Assessment Values – Residential with homegrown produce

Mei Ebling

Eastwood Consulting Engineers
 St Andrews House
 23 Kingfield Road
 Sheffield
 South Yorkshire
 S11 9AS

t: 0114 255 4554
f: 0114 2554330
e: mel.ebling@eastwoodce.com

i2 Analytical Ltd.
 7 Woodshots Meadow,
 Croxley Green
 Business Park,
 Watford,
 Herts,
 WD18 8YS

t: 01923 225404
f: 01923 237404
e: reception@i2analytical.com

Analytical Report Number : 23-64744

Project / Site name:	Finchwood Park	Samples received on:	25/10/2023
Your job number:	41623	Samples instructed on / Analysis started on:	25/10/2023
Your order number:	41623	Analysis completed by:	01/11/2023
Report Issue Number:	1	Report issued on:	01/11/2023
Samples Analysed:	26 soil samples		

Signed:

Joanna Szwagrzak
 Junior Reporting Specialist
 For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils - 4 weeks from reporting
 leachates - 2 weeks from reporting
 waters - 2 weeks from reporting
 asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement.
 Application of uncertainty of measurement would provide a range within which the true result lies.
 An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 23-64744

Project / Site name: Finchwood Park

Your Order No: 41623

Lab Sample Number	2856889	2856890	2856891	2856892	2856893
Sample Reference	TP703	TP704	TP705	TP715	TP715
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.35	0.35	0.35	0.20	0.80-1.20
Date Sampled	23/10/2023	23/10/2023	23/10/2023	23/10/2023	23/10/2023
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	12	11
Total mass of sample received	kg	0.001	NONE	0.3	0.3
				0.3	0.2

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	-	-	-	8	7.8
Total Sulphate as SO4	%	0.005	MCERTS	-	-	-	-	0.014
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	-	-	-	-	0.0194
Total Sulphur	%	0.005	MCERTS	-	-	-	-	0.009

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
-----------------------------	-------	-----	-----------	--------	--------	--------	--------	--------

Heavy Metals / Metalloids

Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	7	13
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	-	-	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	-	-	-	< 1.8	< 1.8
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	21	37
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	11	16
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	26	12
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	-	-	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	9.2	35
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	38	49

Monoaromatics & Oxygenates

Benzene	µg/kg	5	MCERTS	-	-	-	-	-
Toluene	µg/kg	5	MCERTS	-	-	-	-	-
Ethylbenzene	µg/kg	5	MCERTS	-	-	-	-	-
p & m-xylene	µg/kg	5	MCERTS	-	-	-	-	-
o-xylene	µg/kg	5	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	5	NONE	-	-	-	-	-

Analytical Report Number: 23-64744

Project / Site name: Finchwood Park

Your Order No: 41623

Lab Sample Number	2856889	2856890	2856891	2856892	2856893
Sample Reference	TP703	TP704	TP705	TP715	TP715
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.35	0.35	0.35	0.20	0.80-1.20
Date Sampled	23/10/2023	23/10/2023	23/10/2023	23/10/2023	23/10/2023
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.02	NONE	-	-	-	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.02	NONE	-	-	-	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.05	NONE	-	-	-	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12 EH CU_1D_AL	mg/kg	1	MCERTS	-	-	-	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16 EH CU_1D_AL	mg/kg	2	MCERTS	-	-	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC21 EH CU_1D_AL	mg/kg	8	MCERTS	-	-	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35 EH CU_1D_AL	mg/kg	8	MCERTS	-	-	-	-	-	-
TPH-CWG - Aliphatic (EC5 - EC35) EH CU+HS_1D_AL	mg/kg	10	NONE	-	-	-	-	-	-

TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.01	NONE	-	-	-	-	-	-
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.01	NONE	-	-	-	-	-	-
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.05	NONE	-	-	-	-	-	-
TPH-CWG - Aromatic >EC10 - EC12 EH CU_1D_AR	mg/kg	1	MCERTS	-	-	-	-	-	-
TPH-CWG - Aromatic >EC12 - EC16 EH CU_1D_AR	mg/kg	2	MCERTS	-	-	-	-	-	-
TPH-CWG - Aromatic >EC16 - EC21 EH CU_1D_AR	mg/kg	10	MCERTS	-	-	-	-	-	-
TPH-CWG - Aromatic >EC21 - EC35 EH CU_1D_AR	mg/kg	10	MCERTS	-	-	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC35) EH CU+HS_1D_AR	mg/kg	10	NONE	-	-	-	-	-	-

4041 MCERTS

Analytical Report Number: 23-64744

Project / Site name: Finchwood Park

Your Order No: 41623

Lab Sample Number	2856889	2856890	2856891	2856892	2856893
Sample Reference	TP703	TP704	TP705	TP715	TP715
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.35	0.35	0.35	0.20	0.80-1.20
Date Sampled	23/10/2023	23/10/2023	23/10/2023	23/10/2023	23/10/2023
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		

Pesticides

Alachlor	µg/kg	10	NONE	-	-	-	-	-	-
Aldrin	µg/kg	10	NONE	-	-	-	-	-	-
Azinphos-ethyl	µg/kg	10	NONE	-	-	-	-	-	-
Azinphos-methyl	µg/kg	10	NONE	-	-	-	-	-	-
BHC-alpha (benzene hexachloride)	µg/kg	10	NONE	-	-	-	-	-	-
BHC-beta	µg/kg	10	NONE	-	-	-	-	-	-
BHC-delta	µg/kg	10	NONE	-	-	-	-	-	-
BHC-gamma (Lindane, gamma HCH)	µg/kg	10	NONE	-	-	-	-	-	-
Bifenthrin	µg/kg	10	NONE	-	-	-	-	-	-
Carbophenothion	µg/kg	10	NONE	-	-	-	-	-	-
Chlordane-cis	µg/kg	10	NONE	-	-	-	-	-	-
Chlordane-trans	µg/kg	10	NONE	-	-	-	-	-	-
Chlorfenvinphos	µg/kg	10	NONE	-	-	-	-	-	-
Chlorothalonil	µg/kg	20	NONE	-	-	-	-	-	-
Chlorpyrifos	µg/kg	10	NONE	-	-	-	-	-	-
Cyfluthrin (Sum)	µg/kg	10	NONE	-	-	-	-	-	-
Cyhalothrin (Lambda)	µg/kg	10	NONE	-	-	-	-	-	-
Cypermethrin (Sum)	µg/kg	10	NONE	-	-	-	-	-	-
DDD-o,p'	µg/kg	10	NONE	-	-	-	-	-	-
DDD-p,p'	µg/kg	10	NONE	-	-	-	-	-	-
DDE-o,p'	µg/kg	10	NONE	-	-	-	-	-	-
DDE-p,p'	µg/kg	10	NONE	-	-	-	-	-	-
DDT-o,p'	µg/kg	10	NONE	-	-	-	-	-	-
DDT-p,p'	µg/kg	10	NONE	-	-	-	-	-	-
Deltamethrin	µg/kg	10	NONE	-	-	-	-	-	-
Demeton-O	µg/kg	10	NONE	-	-	-	-	-	-
Demeton-S	µg/kg	10	NONE	-	-	-	-	-	-
Diazinon	µg/kg	10	NONE	-	-	-	-	-	-
Dichlorobenzonitrile, 2,6-	µg/kg	10	NONE	-	-	-	-	-	-
Dichlorvos	µg/kg	10	NONE	-	-	-	-	-	-
Dieldrin	µg/kg	10	NONE	-	-	-	-	-	-
Dimethoate	µg/kg	10	NONE	-	-	-	-	-	-
Dimethylvinphos	µg/kg	10	NONE	-	-	-	-	-	-
Endosulfan I (alpha isomer)	µg/kg	10	NONE	-	-	-	-	-	-
Endosulfan II (beta isomer)	µg/kg	10	NONE	-	-	-	-	-	-
Endosulfan sulfate	µg/kg	10	NONE	-	-	-	-	-	-
Endrin	µg/kg	20	NONE	-	-	-	-	-	-
Endrin aldehyde	µg/kg	10	NONE	-	-	-	-	-	-
Endrin ketone	µg/kg	10	NONE	-	-	-	-	-	-
Ethion	µg/kg	10	NONE	-	-	-	-	-	-
Etrimesfos	µg/kg	10	NONE	-	-	-	-	-	-
Fenitrothion	µg/kg	10	NONE	-	-	-	-	-	-
Fenthion	µg/kg	10	NONE	-	-	-	-	-	-
Fenvalerate (Sum)	µg/kg	10	NONE	-	-	-	-	-	-
Heptachlor	µg/kg	10	NONE	-	-	-	-	-	-
Heptachlor exo-epoxide	µg/kg	10	NONE	-	-	-	-	-	-
Hexachlorobenzene	µg/kg	10	NONE	-	-	-	-	-	-
Hexachlorobutadiene	µg/kg	10	NONE	-	-	-	-	-	-
Isodrin	µg/kg	20	NONE	-	-	-	-	-	-
Malathion	µg/kg	10	NONE	-	-	-	-	-	-
Methacrifos	µg/kg	10	NONE	-	-	-	-	-	-
Methoxychlor, p,p'-	µg/kg	20	NONE	-	-	-	-	-	-

4041 MCERTS

Analytical Report Number: 23-64744

Project / Site name: Finchwood Park

Your Order No: 41623

Lab Sample Number		2856889	2856890	2856891	2856892	2856893
Sample Reference		TP703	TP704	TP705	TP715	TP715
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		0.35	0.35	0.35	0.20	0.80-1.20
Date Sampled		23/10/2023	23/10/2023	23/10/2023	23/10/2023	23/10/2023
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Mevinphos, E+Z	µg/kg	10	NONE	-	-	-
Omethoate	µg/kg	20	NONE	-	-	-
Parathion	µg/kg	10	NONE	-	-	-
Parathion-methyl	µg/kg	10	NONE	-	-	-
Pendimethalin	µg/kg	10	NONE	-	-	-
Pentachlorobenzene	µg/kg	10	NONE	-	-	-
Permethrin, Cis-	µg/kg	10	NONE	-	-	-
Permethrin, Trans-	µg/kg	10	NONE	-	-	-
Phorate	µg/kg	10	NONE	-	-	-
Phosalone	µg/kg	10	NONE	-	-	-
Phosphamidon (Sum)	µg/kg	10	NONE	-	-	-
Pirimiphos-ethyl	µg/kg	10	NONE	-	-	-
Pirimiphos-methyl	µg/kg	10	NONE	-	-	-
Propetamphos	µg/kg	10	NONE	-	-	-
Propyzamide	µg/kg	10	NONE	-	-	-
Tecnazene	µg/kg	10	NONE	-	-	-
Tetrachlorobenzene, 1,2,4,5-	µg/kg	10	NONE	-	-	-
Trichlorobenzene, 1,2,3-	µg/kg	10	NONE	-	-	-
Trichlorobenzene, 1,3,5-	µg/kg	10	NONE	-	-	-
Trifluralin	µg/kg	10	NONE	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Analytical Report Number: 23-64744
 Project / Site name: Finchwood Park
 Your Order No: 41623

Lab Sample Number	2856894	2856895	2856896	2856897	2856898
Sample Reference	TP717	TP717	TP718	TP718	TP719
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.15	1.20	0.20	1.10	0.20
Date Sampled	23/10/2023	23/10/2023	23/10/2023	23/10/2023	23/10/2023
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	15	17
Total mass of sample received	kg	0.001	NONE	0.3	0.3
				0.3	0.2
					0.3

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	7.4	7.8	8.2	7.3	7.6
Total Sulphate as SO4	%	0.005	MCERTS	-	0.009	-	0.011	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	-	0.0216	-	0.0358	-
Total Sulphur	%	0.005	MCERTS	-	0.008	-	0.007	-

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.07	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.15	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.13	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.08	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.09	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05	< 0.05	0.11	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05	< 0.05	0.07	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.09	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
-----------------------------	-------	-----	-----------	--------	--------	--------	--------	--------

Heavy Metals / Metalloids

Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	6.2	12	10	10	9.3
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	0.4	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	20	40	36	38	27
Copper (aqua regia extractable)	mg/kg	1	MCERTS	8.8	15	63	13	12
Lead (aqua regia extractable)	mg/kg	1	MCERTS	18	12	26	10	14
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	7.5	31	17	28	14
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	33	51	120	43	40

Monoaromatics & Oxygenates

Benzene	µg/kg	5	MCERTS	-	-	-	-	-
Toluene	µg/kg	5	MCERTS	-	-	-	-	-
Ethylbenzene	µg/kg	5	MCERTS	-	-	-	-	-
p & m-xylene	µg/kg	5	MCERTS	-	-	-	-	-
o-xylene	µg/kg	5	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	5	NONE	-	-	-	-	-

Analytical Report Number: 23-64744

Project / Site name: Finchwood Park

Your Order No: 41623

Lab Sample Number	2856894	2856895	2856896	2856897	2856898
Sample Reference	TP717	TP717	TP718	TP718	TP719
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.15	1.20	0.20	1.10	0.20
Date Sampled	23/10/2023	23/10/2023	23/10/2023	23/10/2023	23/10/2023
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Petroleum Hydrocarbons					
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.02	NONE	-	-
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.02	NONE	-	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.05	NONE	-	-
TPH-CWG - Aliphatic >EC10 - EC12 EH CU_1D_AL	mg/kg	1	MCERTS	-	-
TPH-CWG - Aliphatic >EC12 - EC16 EH CU_1D_AL	mg/kg	2	MCERTS	-	-
TPH-CWG - Aliphatic >EC16 - EC21 EH CU_1D_AL	mg/kg	8	MCERTS	-	-
TPH-CWG - Aliphatic >EC21 - EC35 EH CU_1D_AL	mg/kg	8	MCERTS	-	-
TPH-CWG - Aliphatic (EC5 - EC35) EH CU+HS_1D_AL	mg/kg	10	NONE	-	-
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.01	NONE	-	-
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.01	NONE	-	-
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.05	NONE	-	-
TPH-CWG - Aromatic >EC10 - EC12 EH CU_1D_AR	mg/kg	1	MCERTS	-	-
TPH-CWG - Aromatic >EC12 - EC16 EH CU_1D_AR	mg/kg	2	MCERTS	-	-
TPH-CWG - Aromatic >EC16 - EC21 EH CU_1D_AR	mg/kg	10	MCERTS	-	-
TPH-CWG - Aromatic >EC21 - EC35 EH CU_1D_AR	mg/kg	10	MCERTS	-	-
TPH-CWG - Aromatic (EC5 - EC35) EH CU+HS_1D_AR	mg/kg	10	NONE	-	-

4041 MCERTS

Analytical Report Number: 23-64744

Project / Site name: Finchwood Park

Your Order No: 41623

Lab Sample Number		2856894	2856895	2856896	2856897	2856898
Sample Reference		TP717	TP717	TP718	TP718	TP719
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		0.15	1.20	0.20	1.10	0.20
Date Sampled		23/10/2023	23/10/2023	23/10/2023	23/10/2023	23/10/2023
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Pesticides						
Alachlor	µg/kg	10	NONE	-	-	-
Aldrin	µg/kg	10	NONE	-	-	-
Azinphos-ethyl	µg/kg	10	NONE	-	-	-
Azinphos-methyl	µg/kg	10	NONE	-	-	-
BHC-alpha (benzene hexachloride)	µg/kg	10	NONE	-	-	-
BHC-beta	µg/kg	10	NONE	-	-	-
BHC-delta	µg/kg	10	NONE	-	-	-
BHC-gamma (Lindane, gamma HCH)	µg/kg	10	NONE	-	-	-
Bifenthrin	µg/kg	10	NONE	-	-	-
Carbophenothion	µg/kg	10	NONE	-	-	-
Chlordane-cis	µg/kg	10	NONE	-	-	-
Chlordane-trans	µg/kg	10	NONE	-	-	-
Chlorfenvinphos	µg/kg	10	NONE	-	-	-
Chlorothalonil	µg/kg	20	NONE	-	-	-
Chlorpyrifos	µg/kg	10	NONE	-	-	-
Cyfluthrin (Sum)	µg/kg	10	NONE	-	-	-
Cyhalothrin (Lambda)	µg/kg	10	NONE	-	-	-
Cypermethrin (Sum)	µg/kg	10	NONE	-	-	-
DDD-o,p'	µg/kg	10	NONE	-	-	-
DDD-p,p'	µg/kg	10	NONE	-	-	-
DDE-o,p'	µg/kg	10	NONE	-	-	-
DDE-p,p'	µg/kg	10	NONE	-	-	-
DDT-o,p'	µg/kg	10	NONE	-	-	-
DDT-p,p'	µg/kg	10	NONE	-	-	-
Deltamethrin	µg/kg	10	NONE	-	-	-
Demeton-O	µg/kg	10	NONE	-	-	-
Demeton-S	µg/kg	10	NONE	-	-	-
Diazinon	µg/kg	10	NONE	-	-	-
Dichlorobenzonitrile, 2,6-	µg/kg	10	NONE	-	-	-
Dichlorvos	µg/kg	10	NONE	-	-	-
Dieldrin	µg/kg	10	NONE	-	-	-
Dimethoate	µg/kg	10	NONE	-	-	-
Dimethylvinphos	µg/kg	10	NONE	-	-	-
Endosulfan I (alpha isomer)	µg/kg	10	NONE	-	-	-
Endosulfan II (beta isomer)	µg/kg	10	NONE	-	-	-
Endosulfan sulfate	µg/kg	10	NONE	-	-	-
Endrin	µg/kg	20	NONE	-	-	-
Endrin aldehyde	µg/kg	10	NONE	-	-	-
Endrin ketone	µg/kg	10	NONE	-	-	-
Ethion	µg/kg	10	NONE	-	-	-
Etrimes	µg/kg	10	NONE	-	-	-
Fenitrothion	µg/kg	10	NONE	-	-	-
Fenthion	µg/kg	10	NONE	-	-	-
Fenvalerate (Sum)	µg/kg	10	NONE	-	-	-
Heptachlor	µg/kg	10	NONE	-	-	-
Heptachlor exo-epoxide	µg/kg	10	NONE	-	-	-
Hexachlorobenzene	µg/kg	10	NONE	-	-	-
Hexachlorobutadiene	µg/kg	10	NONE	-	-	-
Isodrin	µg/kg	20	NONE	-	-	-
Malathion	µg/kg	10	NONE	-	-	-
Methacrifos	µg/kg	10	NONE	-	-	-
Methoxychlor, p,p'-	µg/kg	20	NONE	-	-	-

4041 MCERTS

Analytical Report Number: 23-64744

Project / Site name: Finchwood Park

Your Order No: 41623

Lab Sample Number		2856894	2856895	2856896	2856897	2856898
Sample Reference		TP717	TP717	TP718	TP718	TP719
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		0.15	1.20	0.20	1.10	0.20
Date Sampled		23/10/2023	23/10/2023	23/10/2023	23/10/2023	23/10/2023
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Mevinphos, E+Z	µg/kg	10	NONE	-	-	-
Omethoate	µg/kg	20	NONE	-	-	-
Parathion	µg/kg	10	NONE	-	-	-
Parathion-methyl	µg/kg	10	NONE	-	-	-
Pendimethalin	µg/kg	10	NONE	-	-	-
Pentachlorobenzene	µg/kg	10	NONE	-	-	-
Permethrin, Cis-	µg/kg	10	NONE	-	-	-
Permethrin, Trans-	µg/kg	10	NONE	-	-	-
Phorate	µg/kg	10	NONE	-	-	-
Phosalone	µg/kg	10	NONE	-	-	-
Phosphamidon (Sum)	µg/kg	10	NONE	-	-	-
Pirimiphos-ethyl	µg/kg	10	NONE	-	-	-
Pirimiphos-methyl	µg/kg	10	NONE	-	-	-
Propetamphos	µg/kg	10	NONE	-	-	-
Propyzamide	µg/kg	10	NONE	-	-	-
Tecnazene	µg/kg	10	NONE	-	-	-
Tetrachlorobenzene, 1,2,4,5-	µg/kg	10	NONE	-	-	-
Trichlorobenzene, 1,2,3-	µg/kg	10	NONE	-	-	-
Trichlorobenzene, 1,3,5-	µg/kg	10	NONE	-	-	-
Trifluralin	µg/kg	10	NONE	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Analytical Report Number: 23-64744
 Project / Site name: Finchwood Park
 Your Order No: 41623

Lab Sample Number	2856899	2856900	2856901	2856902	2856903
Sample Reference	TP719	TP720	TP720	TP722	TP722
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.70	0.30	1.50	0.20	1.50
Date Sampled	23/10/2023	23/10/2023	23/10/2023	23/10/2023	23/10/2023
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	17	16
Total mass of sample received	kg	0.001	NONE	0.3	0.2
				0.3	0.2

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	7.6	7.5	7.6	8.1	7.6
Total Sulphate as SO4	%	0.005	MCERTS	0.01	-	0.007	-	0.012
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.0208	-	0.0097	-	0.0114
Total Sulphur	%	0.005	MCERTS	0.009	-	0.005	-	0.005

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	0.1	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.18	< 0.05	0.07	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	0.16	< 0.05	0.07	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	0.07	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	0.08	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
-----------------------------	-------	-----	-----------	--------	--------	--------	--------	--------

Heavy Metals / Metalloids

Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	11	5.8	11	7.9	11
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	41	18	36	22	35
Copper (aqua regia extractable)	mg/kg	1	MCERTS	14	12	14	14	13
Lead (aqua regia extractable)	mg/kg	1	MCERTS	12	21	11	23	11
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	27	6.8	31	8.9	22
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	51	38	43	53	44

Monoaromatics & Oxygenates

Benzene	µg/kg	5	MCERTS	-	-	< 5.0	-	< 5.0
Toluene	µg/kg	5	MCERTS	-	-	< 5.0	-	< 5.0
Ethylbenzene	µg/kg	5	MCERTS	-	-	< 5.0	-	< 5.0
p & m-xylene	µg/kg	5	MCERTS	-	-	< 5.0	-	< 5.0
o-xylene	µg/kg	5	MCERTS	-	-	< 5.0	-	< 5.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	5	NONE	-	-	< 5.0	-	< 5.0

Analytical Report Number: 23-64744

Project / Site name: Finchwood Park

Your Order No: 41623

Lab Sample Number	2856899	2856900	2856901	2856902	2856903
Sample Reference	TP719	TP720	TP720	TP722	TP722
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.70	0.30	1.50	0.20	1.50
Date Sampled	23/10/2023	23/10/2023	23/10/2023	23/10/2023	23/10/2023
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Petroleum Hydrocarbons					
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.02	NONE	-	-
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.02	NONE	-	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.05	NONE	-	-
TPH-CWG - Aliphatic >EC10 - EC12 EH CU_1D_AL	mg/kg	1	MCERTS	-	-
TPH-CWG - Aliphatic >EC12 - EC16 EH CU_1D_AL	mg/kg	2	MCERTS	-	-
TPH-CWG - Aliphatic >EC16 - EC21 EH CU_1D_AL	mg/kg	8	MCERTS	-	-
TPH-CWG - Aliphatic >EC21 - EC35 EH CU_1D_AL	mg/kg	8	MCERTS	-	-
TPH-CWG - Aliphatic (EC5 - EC35) EH CU+HS_1D_AL	mg/kg	10	NONE	-	-
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.01	NONE	-	-
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.01	NONE	-	-
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.05	NONE	-	-
TPH-CWG - Aromatic >EC10 - EC12 EH CU_1D_AR	mg/kg	1	MCERTS	-	-
TPH-CWG - Aromatic >EC12 - EC16 EH CU_1D_AR	mg/kg	2	MCERTS	-	-
TPH-CWG - Aromatic >EC16 - EC21 EH CU_1D_AR	mg/kg	10	MCERTS	-	-
TPH-CWG - Aromatic >EC21 - EC35 EH CU_1D_AR	mg/kg	10	MCERTS	-	-
TPH-CWG - Aromatic (EC5 - EC35) EH CU+HS_1D_AR	mg/kg	10	NONE	-	-

4041 MCERTS

Analytical Report Number: 23-64744

Project / Site name: Finchwood Park

Your Order No: 41623

Lab Sample Number		2856899	2856900	2856901	2856902	2856903
Sample Reference		TP719	TP720	TP720	TP722	TP722
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		0.70	0.30	1.50	0.20	1.50
Date Sampled		23/10/2023	23/10/2023	23/10/2023	23/10/2023	23/10/2023
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Pesticides						
Alachlor	µg/kg	10	NONE	-	-	-
Aldrin	µg/kg	10	NONE	-	-	-
Azinphos-ethyl	µg/kg	10	NONE	-	-	-
Azinphos-methyl	µg/kg	10	NONE	-	-	-
BHC-alpha (benzene hexachloride)	µg/kg	10	NONE	-	-	-
BHC-beta	µg/kg	10	NONE	-	-	-
BHC-delta	µg/kg	10	NONE	-	-	-
BHC-gamma (Lindane, gamma HCH)	µg/kg	10	NONE	-	-	-
Bifenthrin	µg/kg	10	NONE	-	-	-
Carbophenothion	µg/kg	10	NONE	-	-	-
Chlordane-cis	µg/kg	10	NONE	-	-	-
Chlordane-trans	µg/kg	10	NONE	-	-	-
Chlorfenvinphos	µg/kg	10	NONE	-	-	-
Chlorothalonil	µg/kg	20	NONE	-	-	-
Chlorpyrifos	µg/kg	10	NONE	-	-	-
Cyfluthrin (Sum)	µg/kg	10	NONE	-	-	-
Cyhalothrin (Lambda)	µg/kg	10	NONE	-	-	-
Cypermethrin (Sum)	µg/kg	10	NONE	-	-	-
DDD-o,p'	µg/kg	10	NONE	-	-	-
DDD-p,p'	µg/kg	10	NONE	-	-	-
DDE-o,p'	µg/kg	10	NONE	-	-	-
DDE-p,p'	µg/kg	10	NONE	-	-	-
DDT-o,p'	µg/kg	10	NONE	-	-	-
DDT-p,p'	µg/kg	10	NONE	-	-	-
Deltamethrin	µg/kg	10	NONE	-	-	-
Demeton-O	µg/kg	10	NONE	-	-	-
Demeton-S	µg/kg	10	NONE	-	-	-
Diazinon	µg/kg	10	NONE	-	-	-
Dichlorobenzonitrile, 2,6-	µg/kg	10	NONE	-	-	-
Dichlorvos	µg/kg	10	NONE	-	-	-
Dieldrin	µg/kg	10	NONE	-	-	-
Dimethoate	µg/kg	10	NONE	-	-	-
Dimethylvinphos	µg/kg	10	NONE	-	-	-
Endosulfan I (alpha isomer)	µg/kg	10	NONE	-	-	-
Endosulfan II (beta isomer)	µg/kg	10	NONE	-	-	-
Endosulfan sulfate	µg/kg	10	NONE	-	-	-
Endrin	µg/kg	20	NONE	-	-	-
Endrin aldehyde	µg/kg	10	NONE	-	-	-
Endrin ketone	µg/kg	10	NONE	-	-	-
Ethion	µg/kg	10	NONE	-	-	-
Etrimes	µg/kg	10	NONE	-	-	-
Fenitrothion	µg/kg	10	NONE	-	-	-
Fenthion	µg/kg	10	NONE	-	-	-
Fenvalerate (Sum)	µg/kg	10	NONE	-	-	-
Heptachlor	µg/kg	10	NONE	-	-	-
Heptachlor exo-epoxide	µg/kg	10	NONE	-	-	-
Hexachlorobenzene	µg/kg	10	NONE	-	-	-
Hexachlorobutadiene	µg/kg	10	NONE	-	-	-
Isodrin	µg/kg	20	NONE	-	-	-
Malathion	µg/kg	10	NONE	-	-	-
Methacrifos	µg/kg	10	NONE	-	-	-
Methoxychlor, p,p'-	µg/kg	20	NONE	-	-	-

4041 MCERTS

Analytical Report Number: 23-64744

Project / Site name: Finchwood Park

Your Order No: 41623

Lab Sample Number		2856899	2856900	2856901	2856902	2856903
Sample Reference		TP719	TP720	TP720	TP722	TP722
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		0.70	0.30	1.50	0.20	1.50
Date Sampled		23/10/2023	23/10/2023	23/10/2023	23/10/2023	23/10/2023
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Mevinphos, E+Z	µg/kg	10	NONE	-	-	-
Omethoate	µg/kg	20	NONE	-	-	-
Parathion	µg/kg	10	NONE	-	-	-
Parathion-methyl	µg/kg	10	NONE	-	-	-
Pendimethalin	µg/kg	10	NONE	-	-	-
Pentachlorobenzene	µg/kg	10	NONE	-	-	-
Permethrin, Cis-	µg/kg	10	NONE	-	-	-
Permethrin, Trans-	µg/kg	10	NONE	-	-	-
Phorate	µg/kg	10	NONE	-	-	-
Phosalone	µg/kg	10	NONE	-	-	-
Phosphamidon (Sum)	µg/kg	10	NONE	-	-	-
Pirimiphos-ethyl	µg/kg	10	NONE	-	-	-
Pirimiphos-methyl	µg/kg	10	NONE	-	-	-
Propetamphos	µg/kg	10	NONE	-	-	-
Propyzamide	µg/kg	10	NONE	-	-	-
Tecnazene	µg/kg	10	NONE	-	-	-
Tetrachlorobenzene, 1,2,4,5-	µg/kg	10	NONE	-	-	-
Trichlorobenzene, 1,2,3-	µg/kg	10	NONE	-	-	-
Trichlorobenzene, 1,3,5-	µg/kg	10	NONE	-	-	-
Trifluralin	µg/kg	10	NONE	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Analytical Report Number: 23-64744
 Project / Site name: Finchwood Park
 Your Order No: 41623

Lab Sample Number	2856904	2856905	2856906	2856907	2856908
Sample Reference	TP721	TP723	TP724	TP725	TP726
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.20	0.15	0.15	0.15	0.15
Date Sampled	23/10/2023	23/10/2023	23/10/2023	23/10/2023	23/10/2023
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	18	12
Total mass of sample received	kg	0.001	NONE	0.3	0.2
				0.3	0.2

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8	7.1	6.6	6.9	6.8
Total Sulphate as SO4	%	0.005	MCERTS	-	-	-	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	-	-	-	-	-
Total Sulphur	%	0.005	MCERTS	-	-	-	-	-

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	0.08	< 0.05	< 0.05	0.06	< 0.05
Pyrene	mg/kg	0.05	MCERTS	0.08	< 0.05	< 0.05	0.06	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
-----------------------------	-------	-----	-----------	--------	--------	--------	--------	--------

Heavy Metals / Metalloids

Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	8.3	7.3	6	6	6.5
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.4	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	25	20	20	18	19
Copper (aqua regia extractable)	mg/kg	1	MCERTS	26	6.3	13	9	8.6
Lead (aqua regia extractable)	mg/kg	1	MCERTS	25	19	21	19	20
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	12	6.4	5.4	5.2	5.9
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	84	29	26	28	30

Monoaromatics & Oxygenates

Benzene	µg/kg	5	MCERTS	-	-	-	-	-
Toluene	µg/kg	5	MCERTS	-	-	-	-	-
Ethylbenzene	µg/kg	5	MCERTS	-	-	-	-	-
p & m-xylene	µg/kg	5	MCERTS	-	-	-	-	-
o-xylene	µg/kg	5	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	5	NONE	-	-	-	-	-

Analytical Report Number: 23-64744

Project / Site name: Finchwood Park

Your Order No: 41623

Lab Sample Number	2856904	2856905	2856906	2856907	2856908
Sample Reference	TP721	TP723	TP724	TP725	TP726
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.20	0.15	0.15	0.15	0.15
Date Sampled	23/10/2023	23/10/2023	23/10/2023	23/10/2023	23/10/2023
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Petroleum Hydrocarbons					
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.02	NONE	-	-
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.02	NONE	-	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.05	NONE	-	-
TPH-CWG - Aliphatic >EC10 - EC12 EH CU_1D_AL	mg/kg	1	MCERTS	-	-
TPH-CWG - Aliphatic >EC12 - EC16 EH CU_1D_AL	mg/kg	2	MCERTS	-	-
TPH-CWG - Aliphatic >EC16 - EC21 EH CU_1D_AL	mg/kg	8	MCERTS	-	-
TPH-CWG - Aliphatic >EC21 - EC35 EH CU_1D_AL	mg/kg	8	MCERTS	-	-
TPH-CWG - Aliphatic (EC5 - EC35) EH CU+HS_1D_AL	mg/kg	10	NONE	-	-
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.01	NONE	-	-
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.01	NONE	-	-
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.05	NONE	-	-
TPH-CWG - Aromatic >EC10 - EC12 EH CU_1D_AR	mg/kg	1	MCERTS	-	-
TPH-CWG - Aromatic >EC12 - EC16 EH CU_1D_AR	mg/kg	2	MCERTS	-	-
TPH-CWG - Aromatic >EC16 - EC21 EH CU_1D_AR	mg/kg	10	MCERTS	-	-
TPH-CWG - Aromatic >EC21 - EC35 EH CU_1D_AR	mg/kg	10	MCERTS	-	-
TPH-CWG - Aromatic (EC5 - EC35) EH CU+HS_1D_AR	mg/kg	10	NONE	-	-

4041

Analytical Report Number: 23-64744
Project / Site name: Finchwood Park
Your Order No: 41623

Lab Sample Number		2856904	2856905	2856906	2856907	2856908
Sample Reference		TP721	TP723	TP724	TP725	TP726
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		0.20	0.15	0.15	0.15	0.15
Date Sampled		23/10/2023	23/10/2023	23/10/2023	23/10/2023	23/10/2023
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Pesticides						
Alachlor	µg/kg	10	NONE	-	< 10	-
Aldrin	µg/kg	10	NONE	-	< 10	-
Azinphos-ethyl	µg/kg	10	NONE	-	< 10	-
Azinphos-methyl	µg/kg	10	NONE	-	< 10	-
BHC-alpha (benzene hexachloride)	µg/kg	10	NONE	-	< 10	-
BHC-beta	µg/kg	10	NONE	-	< 10	-
BHC-delta	µg/kg	10	NONE	-	< 10	-
BHC-gamma (Lindane, gamma HCH)	µg/kg	10	NONE	-	< 10	-
Bifenthrin	µg/kg	10	NONE	-	< 10	-
Carbophenothion	µg/kg	10	NONE	-	< 10	-
Chlordane-cis	µg/kg	10	NONE	-	< 10	-
Chlordane-trans	µg/kg	10	NONE	-	< 10	-
Chlorfenvinphos	µg/kg	10	NONE	-	< 10	-
Chlorothalonil	µg/kg	20	NONE	-	< 20	-
Chlorpyrifos	µg/kg	10	NONE	-	< 10	-
Cyfluthrin (Sum)	µg/kg	10	NONE	-	< 10	-
Cyhalothrin (Lambda)	µg/kg	10	NONE	-	< 10	-
Cypermethrin (Sum)	µg/kg	10	NONE	-	< 10	-
DDD-o,p'	µg/kg	10	NONE	-	< 10	-
DDD-p,p'	µg/kg	10	NONE	-	< 10	-
DDE-o,p'	µg/kg	10	NONE	-	< 10	-
DDE-p,p'	µg/kg	10	NONE	-	< 10	-
DDT-o,p'	µg/kg	10	NONE	-	< 10	-
DDT-p,p'	µg/kg	10	NONE	-	< 10	-
Deltamethrin	µg/kg	10	NONE	-	< 10	-
Demeton-O	µg/kg	10	NONE	-	< 10	-
Demeton-S	µg/kg	10	NONE	-	< 10	-
Diazinon	µg/kg	10	NONE	-	< 10	-
Dichlorobenzonitrile, 2,6-	µg/kg	10	NONE	-	< 10	-
Dichlorvos	µg/kg	10	NONE	-	< 10	-
Dieldrin	µg/kg	10	NONE	-	< 10	-
Dimethoate	µg/kg	10	NONE	-	< 10	-
Dimethylvinphos	µg/kg	10	NONE	-	< 10	-
Endosulfan I (alpha isomer)	µg/kg	10	NONE	-	< 10	-
Endosulfan II (beta isomer)	µg/kg	10	NONE	-	< 10	-
Endosulfan sulfate	µg/kg	10	NONE	-	< 10	-
Endrin	µg/kg	20	NONE	-	< 20	-
Endrin aldehyde	µg/kg	10	NONE	-	< 10	-
Endrin ketone	µg/kg	10	NONE	-	< 10	-
Ethion	µg/kg	10	NONE	-	< 10	-
Etrimes	µg/kg	10	NONE	-	< 10	-
Fenitrothion	µg/kg	10	NONE	-	< 10	-
Fenthion	µg/kg	10	NONE	-	< 10	-
Fenvvalerate (Sum)	µg/kg	10	NONE	-	< 10	-
Heptachlor	µg/kg	10	NONE	-	< 10	-
Heptachlor exo-epoxide	µg/kg	10	NONE	-	< 10	-
Hexachlorobenzene	µg/kg	10	NONE	-	< 10	-
Hexachlorobutadiene	µg/kg	10	NONE	-	< 10	-
Isodrin	µg/kg	20	NONE	-	< 20	-
Malathion	µg/kg	10	NONE	-	< 10	-
Methacrifos	µg/kg	10	NONE	-	< 10	-
Methoxychlor, p,p'-	µg/kg	20	NONE	-	< 20	-

4041 MCERTS

Analytical Report Number: 23-64744

Project / Site name: Finchwood Park

Your Order No: 41623

Lab Sample Number		2856904	2856905	2856906	2856907	2856908
Sample Reference		TP721	TP723	TP724	TP725	TP726
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		0.20	0.15	0.15	0.15	0.15
Date Sampled		23/10/2023	23/10/2023	23/10/2023	23/10/2023	23/10/2023
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Mevinphos, E+Z	µg/kg	10	NONE	-	< 10	-
Omethoate	µg/kg	20	NONE	-	< 20	-
Parathion	µg/kg	10	NONE	-	< 10	-
Parathion-methyl	µg/kg	10	NONE	-	< 10	-
Pendimethalin	µg/kg	10	NONE	-	< 10	-
Pentachlorobenzene	µg/kg	10	NONE	-	< 10	-
Permethrin, Cis-	µg/kg	10	NONE	-	< 10	-
Permethrin, Trans-	µg/kg	10	NONE	-	< 10	-
Phorate	µg/kg	10	NONE	-	< 10	-
Phosalone	µg/kg	10	NONE	-	< 10	-
Phosphamidon (Sum)	µg/kg	10	NONE	-	< 10	-
Pirimiphos-ethyl	µg/kg	10	NONE	-	< 10	-
Pirimiphos-methyl	µg/kg	10	NONE	-	< 10	-
Propetamphos	µg/kg	10	NONE	-	< 10	-
Propyzamide	µg/kg	10	NONE	-	< 10	-
Tecnazene	µg/kg	10	NONE	-	< 10	-
Tetrachlorobenzene, 1,2,4,5-	µg/kg	10	NONE	-	< 10	-
Trichlorobenzene, 1,2,3-	µg/kg	10	NONE	-	< 10	-
Trichlorobenzene, 1,3,5-	µg/kg	10	NONE	-	< 10	-
Trifluralin	µg/kg	10	NONE	-	< 10	-

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

4041

Analytical Report Number: 23-64744
 Project / Site name: Finchwood Park
 Your Order No: 41623

Lab Sample Number	2856909	2856910	2856911	2856912	2856913
Sample Reference	TP727	TP723	TP721	TP722	TP724
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.20	1.30	1.00	0.90	0.50
Date Sampled	23/10/2023	23/10/2023	23/10/2023	23/10/2023	23/10/2023
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	14	16
Total mass of sample received	kg	0.001	NONE	0.3	0.3
				0.2	0.3
				0.2	0.2

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	7.1	7.3	7.1	7.1	7.1
Total Sulphate as SO4	%	0.005	MCERTS	-	0.012	0.015	0.009	0.013
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	-	0.0027	0.0084	0.0073	0.0029
Total Sulphur	%	0.005	MCERTS	-	0.006	< 0.005	< 0.005	0.008

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80
-----------------------------	-------	-----	-----------	--------	--------	--------	--------	--------

Heavy Metals / Metalloids

Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	7.6	11	11	8.3	13
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	23	35	34	30	43
Copper (aqua regia extractable)	mg/kg	1	MCERTS	11	9.3	14	8.9	8.1
Lead (aqua regia extractable)	mg/kg	1	MCERTS	23	10	12	9.7	11
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	7.6	11	28	13	11
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	35	33	48	31	39

Monoaromatics & Oxygenates

Benzene	µg/kg	5	MCERTS	-	< 5.0	-	-	-
Toluene	µg/kg	5	MCERTS	-	< 5.0	-	-	-
Ethylbenzene	µg/kg	5	MCERTS	-	< 5.0	-	-	-
p & m-xylene	µg/kg	5	MCERTS	-	< 5.0	-	-	-
o-xylene	µg/kg	5	MCERTS	-	< 5.0	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	5	NONE	-	< 5.0	-	-	-

Analytical Report Number: 23-64744

Project / Site name: Finchwood Park

Your Order No: 41623

Lab Sample Number	2856909	2856910	2856911	2856912	2856913
Sample Reference	TP727	TP723	TP721	TP722	TP724
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.20	1.30	1.00	0.90	0.50
Date Sampled	23/10/2023	23/10/2023	23/10/2023	23/10/2023	23/10/2023
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Petroleum Hydrocarbons					
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.02	NONE	-	< 0.020
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.02	NONE	-	< 0.020
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.05	NONE	-	< 0.050
TPH-CWG - Aliphatic >EC10 - EC12 EH CU_1D_AL	mg/kg	1	MCERTS	-	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16 EH CU_1D_AL	mg/kg	2	MCERTS	-	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21 EH CU_1D_AL	mg/kg	8	MCERTS	-	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35 EH CU_1D_AL	mg/kg	8	MCERTS	-	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35) EH CU+HS_1D_AL	mg/kg	10	NONE	-	< 10
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.01	NONE	-	< 0.010
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.01	NONE	-	< 0.010
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.05	NONE	-	< 0.050
TPH-CWG - Aromatic >EC10 - EC12 EH CU_1D_AR	mg/kg	1	MCERTS	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16 EH CU_1D_AR	mg/kg	2	MCERTS	-	< 2.0
TPH-CWG - Aromatic >EC16 - EC21 EH CU_1D_AR	mg/kg	10	MCERTS	-	< 10
TPH-CWG - Aromatic >EC21 - EC35 EH CU_1D_AR	mg/kg	10	MCERTS	-	< 10
TPH-CWG - Aromatic (EC5 - EC35) EH CU+HS_1D_AR	mg/kg	10	NONE	-	< 10

4041 MCERTS

Analytical Report Number: 23-64744

Project / Site name: Finchwood Park

Your Order No: 41623

Lab Sample Number		2856909	2856910	2856911	2856912	2856913
Sample Reference		TP727	TP723	TP721	TP722	TP724
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		0.20	1.30	1.00	0.90	0.50
Date Sampled		23/10/2023	23/10/2023	23/10/2023	23/10/2023	23/10/2023
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Pesticides						
Alachlor	µg/kg	10	NONE	< 10	-	-
Aldrin	µg/kg	10	NONE	< 10	-	-
Azinphos-ethyl	µg/kg	10	NONE	< 10	-	-
Azinphos-methyl	µg/kg	10	NONE	< 10	-	-
BHC-alpha (benzene hexachloride)	µg/kg	10	NONE	< 10	-	-
BHC-beta	µg/kg	10	NONE	< 10	-	-
BHC-delta	µg/kg	10	NONE	< 10	-	-
BHC-gamma (Lindane, gamma HCH)	µg/kg	10	NONE	< 10	-	-
Bifenthrin	µg/kg	10	NONE	< 10	-	-
Carbophenothion	µg/kg	10	NONE	< 10	-	-
Chlordane-cis	µg/kg	10	NONE	< 10	-	-
Chlordane-trans	µg/kg	10	NONE	< 10	-	-
Chlorfenvinphos	µg/kg	10	NONE	< 10	-	-
Chlorothalonil	µg/kg	20	NONE	< 20	-	-
Chlorpyrifos	µg/kg	10	NONE	< 10	-	-
Cyfluthrin (Sum)	µg/kg	10	NONE	< 10	-	-
Cyhalothrin (Lambda)	µg/kg	10	NONE	< 10	-	-
Cypermethrin (Sum)	µg/kg	10	NONE	< 10	-	-
DDD-o,p'	µg/kg	10	NONE	< 10	-	-
DDD-p,p'	µg/kg	10	NONE	< 10	-	-
DDE-o,p'	µg/kg	10	NONE	< 10	-	-
DDE-p,p'	µg/kg	10	NONE	< 10	-	-
DDT-o,p'	µg/kg	10	NONE	< 10	-	-
DDT-p,p'	µg/kg	10	NONE	< 10	-	-
Deltamethrin	µg/kg	10	NONE	< 10	-	-
Demeton-O	µg/kg	10	NONE	< 10	-	-
Demeton-S	µg/kg	10	NONE	< 10	-	-
Diazinon	µg/kg	10	NONE	< 10	-	-
Dichlorobenzonitrile, 2,6-	µg/kg	10	NONE	< 10	-	-
Dichlorvos	µg/kg	10	NONE	< 10	-	-
Dieldrin	µg/kg	10	NONE	< 10	-	-
Dimethoate	µg/kg	10	NONE	< 10	-	-
Dimethylvinphos	µg/kg	10	NONE	< 10	-	-
Endosulfan I (alpha isomer)	µg/kg	10	NONE	< 10	-	-
Endosulfan II (beta isomer)	µg/kg	10	NONE	< 10	-	-
Endosulfan sulfate	µg/kg	10	NONE	< 10	-	-
Endrin	µg/kg	20	NONE	< 20	-	-
Endrin aldehyde	µg/kg	10	NONE	< 10	-	-
Endrin ketone	µg/kg	10	NONE	< 10	-	-
Ethion	µg/kg	10	NONE	< 10	-	-
Etrimes	µg/kg	10	NONE	< 10	-	-
Fenitrothion	µg/kg	10	NONE	< 10	-	-
Fenthion	µg/kg	10	NONE	< 10	-	-
Fenvalerate (Sum)	µg/kg	10	NONE	< 10	-	-
Heptachlor	µg/kg	10	NONE	< 10	-	-
Heptachlor exo-epoxide	µg/kg	10	NONE	< 10	-	-
Hexachlorobenzene	µg/kg	10	NONE	< 10	-	-
Hexachlorobutadiene	µg/kg	10	NONE	< 10	-	-
Isodrin	µg/kg	20	NONE	< 20	-	-
Malathion	µg/kg	10	NONE	< 10	-	-
Methacrylates	µg/kg	10	NONE	< 10	-	-
Methoxychlor, p,p'-	µg/kg	20	NONE	< 20	-	-

4041 MCERTS

Analytical Report Number: 23-64744

Project / Site name: Finchwood Park

Your Order No: 41623

Lab Sample Number		2856909	2856910	2856911	2856912	2856913
Sample Reference		TP727	TP723	TP721	TP722	TP724
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		0.20	1.30	1.00	0.90	0.50
Date Sampled		23/10/2023	23/10/2023	23/10/2023	23/10/2023	23/10/2023
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Mevinphos, E+Z	µg/kg	10	NONE	< 10	-	-
Omethoate	µg/kg	20	NONE	< 20	-	-
Parathion	µg/kg	10	NONE	< 10	-	-
Parathion-methyl	µg/kg	10	NONE	< 10	-	-
Pendimethalin	µg/kg	10	NONE	< 10	-	-
Pentachlorobenzene	µg/kg	10	NONE	< 10	-	-
Permethrin, Cis-	µg/kg	10	NONE	< 10	-	-
Permethrin, Trans-	µg/kg	10	NONE	< 10	-	-
Phorate	µg/kg	10	NONE	< 10	-	-
Phosalone	µg/kg	10	NONE	< 10	-	-
Phosphamidon (Sum)	µg/kg	10	NONE	< 10	-	-
Pirimiphos-ethyl	µg/kg	10	NONE	< 10	-	-
Pirimiphos-methyl	µg/kg	10	NONE	< 10	-	-
Propetamphos	µg/kg	10	NONE	< 10	-	-
Propyzamide	µg/kg	10	NONE	< 10	-	-
Tecnazene	µg/kg	10	NONE	< 10	-	-
Tetrachlorobenzene, 1,2,4,5-	µg/kg	10	NONE	< 10	-	-
Trichlorobenzene, 1,2,3-	µg/kg	10	NONE	< 10	-	-
Trichlorobenzene, 1,3,5-	µg/kg	10	NONE	< 10	-	-
Trifluralin	µg/kg	10	NONE	< 10	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Analytical Report Number: 23-64744

Project / Site name: Finchwood Park

Your Order No: 41623

Lab Sample Number	2856914		
Sample Reference	TP726		
Sample Number	None Supplied		
Depth (m)	0.70		
Date Sampled	23/10/2023		
Time Taken	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status
Stone Content	%	0.1	NONE
Moisture Content	%	0.01	NONE
Total mass of sample received	kg	0.001	NONE
			0.3

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	6.9
Total Sulphate as SO4	%	0.005	MCERTS	0.021
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.0277
Total Sulphur	%	0.005	MCERTS	0.008

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	< 0.80
-----------------------------	-------	-----	-----------	--------

Heavy Metals / Metalloids

Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	9.4
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	31
Copper (aqua regia extractable)	mg/kg	1	MCERTS	8.3
Lead (aqua regia extractable)	mg/kg	1	MCERTS	10
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	9.9
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	37

Monoaromatics & Oxygenates

Benzene	µg/kg	5	MCERTS	-
Toluene	µg/kg	5	MCERTS	-
Ethylbenzene	µg/kg	5	MCERTS	-
p & m-xylene	µg/kg	5	MCERTS	-
o-xylene	µg/kg	5	MCERTS	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	5	NONE	-

4041 MCERTS

Analytical Report Number: 23-64744

Project / Site name: Finchwood Park

Your Order No: 41623

Lab Sample Number	2856914			
Sample Reference	TP726			
Sample Number	None Supplied			
Depth (m)	0.70			
Date Sampled	23/10/2023			
Time Taken	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Petroleum Hydrocarbons				
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.02	NONE	-
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.02	NONE	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.05	NONE	-
TPH-CWG - Aliphatic >EC10 - EC12 EH CU_1D_AL	mg/kg	1	MCERTS	-
TPH-CWG - Aliphatic >EC12 - EC16 EH CU_1D_AL	mg/kg	2	MCERTS	-
TPH-CWG - Aliphatic >EC16 - EC21 EH CU_1D_AL	mg/kg	8	MCERTS	-
TPH-CWG - Aliphatic >EC21 - EC35 EH CU_1D_AL	mg/kg	8	MCERTS	-
TPH-CWG - Aliphatic (EC5 - EC35) EH CU+HS_1D_AL	mg/kg	10	NONE	-
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.01	NONE	-
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.01	NONE	-
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.05	NONE	-
TPH-CWG - Aromatic >EC10 - EC12 EH CU_1D_AR	mg/kg	1	MCERTS	-
TPH-CWG - Aromatic >EC12 - EC16 EH CU_1D_AR	mg/kg	2	MCERTS	-
TPH-CWG - Aromatic >EC16 - EC21 EH CU_1D_AR	mg/kg	10	MCERTS	-
TPH-CWG - Aromatic >EC21 - EC35 EH CU_1D_AR	mg/kg	10	MCERTS	-
TPH-CWG - Aromatic (EC5 - EC35) EH CU+HS_1D_AR	mg/kg	10	NONE	-

Analytical Report Number: 23-64744
Project / Site name: Finchwood Park
Your Order No: 41623

Lab Sample Number	2856914			
Sample Reference	TP726			
Sample Number	None Supplied			
Depth (m)	0.70			
Date Sampled	23/10/2023			
Time Taken	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Pesticides				
Alachlor	µg/kg	10	NONE	-
Aldrin	µg/kg	10	NONE	-
Azinphos-ethyl	µg/kg	10	NONE	-
Azinphos-methyl	µg/kg	10	NONE	-
BHC-alpha (benzene hexachloride)	µg/kg	10	NONE	-
BHC-beta	µg/kg	10	NONE	-
BHC-delta	µg/kg	10	NONE	-
BHC-gamma (Lindane, gamma HCH)	µg/kg	10	NONE	-
Bifenthrin	µg/kg	10	NONE	-
Carbophenothion	µg/kg	10	NONE	-
Chlordane-cis	µg/kg	10	NONE	-
Chlordane-trans	µg/kg	10	NONE	-
Chlorfenvinphos	µg/kg	10	NONE	-
Chlorothalonil	µg/kg	20	NONE	-
Chlorpyrifos	µg/kg	10	NONE	-
Cyfluthrin (Sum)	µg/kg	10	NONE	-
Cyhalothrin (Lambda)	µg/kg	10	NONE	-
Cypermethrin (Sum)	µg/kg	10	NONE	-
DDD-o,p'	µg/kg	10	NONE	-
DDD-p,p'	µg/kg	10	NONE	-
DDE-o,p'	µg/kg	10	NONE	-
DDE-p,p'	µg/kg	10	NONE	-
DDT-o,p'	µg/kg	10	NONE	-
DDT-p,p'	µg/kg	10	NONE	-
Deltamethrin	µg/kg	10	NONE	-
Demeton-O	µg/kg	10	NONE	-
Demeton-S	µg/kg	10	NONE	-
Diazinon	µg/kg	10	NONE	-
Dichlorobenzonitrile, 2,6-	µg/kg	10	NONE	-
Dichlorvos	µg/kg	10	NONE	-
Dieldrin	µg/kg	10	NONE	-
Dimethoate	µg/kg	10	NONE	-
Dimethylvinphos	µg/kg	10	NONE	-
Endosulfan I (alpha isomer)	µg/kg	10	NONE	-
Endosulfan II (beta isomer)	µg/kg	10	NONE	-
Endosulfan sulfate	µg/kg	10	NONE	-
Endrin	µg/kg	20	NONE	-
Endrin aldehyde	µg/kg	10	NONE	-
Endrin ketone	µg/kg	10	NONE	-
Ethion	µg/kg	10	NONE	-
Etrifos	µg/kg	10	NONE	-
Fenitrothion	µg/kg	10	NONE	-
Fenthion	µg/kg	10	NONE	-
Fenvalerate (Sum)	µg/kg	10	NONE	-
Heptachlor	µg/kg	10	NONE	-
Heptachlor exo-epoxide	µg/kg	10	NONE	-
Hexachlorobenzene	µg/kg	10	NONE	-
Hexachlorobutadiene	µg/kg	10	NONE	-
Isodrin	µg/kg	20	NONE	-
Malathion	µg/kg	10	NONE	-
Methacrifos	µg/kg	10	NONE	-
Methoxychlor, p,p'-	µg/kg	20	NONE	-

4041

Analytical Report Number: 23-64744

Project / Site name: Finchwood Park

Your Order No: 41623

Lab Sample Number	2856914			
Sample Reference	TP726			
Sample Number	None Supplied			
Depth (m)	0.70			
Date Sampled	23/10/2023			
Time Taken	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Mevinphos, E+Z	µg/kg	10	NONE	-
Omethoate	µg/kg	20	NONE	-
Parathion	µg/kg	10	NONE	-
Parathion-methyl	µg/kg	10	NONE	-
Pendimethalin	µg/kg	10	NONE	-
Pentachlorobenzene	µg/kg	10	NONE	-
Permethrin, Cis-	µg/kg	10	NONE	-
Permethrin, Trans-	µg/kg	10	NONE	-
Phorate	µg/kg	10	NONE	-
Phosalone	µg/kg	10	NONE	-
Phosphamidon (Sum)	µg/kg	10	NONE	-
Pirimiphos-ethyl	µg/kg	10	NONE	-
Pirimiphos-methyl	µg/kg	10	NONE	-
Propetamphos	µg/kg	10	NONE	-
Propyzamide	µg/kg	10	NONE	-
Tecnazene	µg/kg	10	NONE	-
Tetrachlorobenzene, 1,2,4,5-	µg/kg	10	NONE	-
Trichlorobenzene, 1,2,3-	µg/kg	10	NONE	-
Trichlorobenzene, 1,3,5-	µg/kg	10	NONE	-
Trifluralin	µg/kg	10	NONE	-

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Analytical Report Number : 23-64744

Project / Site name: Finchwood Park

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2856889	TP703	None Supplied	0.35	Brown sand with gravel.
2856890	TP704	None Supplied	0.35	Brown sand with gravel.
2856891	TP705	None Supplied	0.35	Brown sand with gravel.
2856892	TP715	None Supplied	0.2	Brown loam and clay with gravel and vegetation.
2856893	TP715	None Supplied	0.80-1.20	Brown clay.
2856894	TP717	None Supplied	0.15	Brown loam and clay with gravel and vegetation.
2856895	TP717	None Supplied	1.2	Brown clay and sand.
2856896	TP718	None Supplied	0.2	Brown clay and loam with gravel and vegetation.
2856897	TP718	None Supplied	1.1	Brown clay and sand with gravel.
2856898	TP719	None Supplied	0.2	Brown clay and sand with gravel.
2856899	TP719	None Supplied	0.7	Brown clay and sand.
2856900	TP720	None Supplied	0.3	Brown clay and loam with gravel and vegetation.
2856901	TP720	None Supplied	1.5	Brown clay and sand.
2856902	TP722	None Supplied	0.2	Brown clay and sand with gravel.
2856903	TP722	None Supplied	1.5	Brown sandy clay with gravel.
2856904	TP721	None Supplied	0.2	Brown sandy clay with gravel.
2856905	TP723	None Supplied	0.15	Brown clay and sand with gravel.
2856906	TP724	None Supplied	0.15	Brown clay and sand with gravel.
2856907	TP725	None Supplied	0.15	Brown clay and sand with gravel and vegetation.
2856908	TP726	None Supplied	0.15	Brown clay and sand with gravel and vegetation.
2856909	TP727	None Supplied	0.2	Brown clay and sand with gravel and vegetation.
2856910	TP723	None Supplied	1.3	Brown sandy clay with gravel.
2856911	TP721	None Supplied	1	Brown sandy clay with gravel.
2856912	TP722	None Supplied	0.9	Brown sandy clay with gravel.
2856913	TP724	None Supplied	0.5	Brown sandy clay with gravel.
2856914	TP726	None Supplied	0.7	Brown sandy clay with gravel.

Analytical Report Number : 23-64744

Project / Site name: Finchwood Park

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards. Refer to CoA for analyte specific accreditation.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260. Refer to CoA for analyte specific accreditation	L073B-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID. Refer to CoA for band specific accreditation.	In-house method with silica gel split/clean up.	L088/76-PL	D	MCERTS
Pesticides by GC-MS/MS	Detemination of Pesticides in soil by GC MS/MS	In-house method	L055B-PL	W	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS

Analytical Report Number : 23-64744

Project / Site name: Finchwood Park

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
-	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Final Report

Report No.: 17-19872-1

Initial Date of Issue: 07-Aug-2017

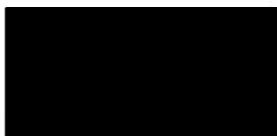
Client Eastwood & Partners

Client Address:
St. Andrews House
23 Kingfield Road
Sheffield
South Yorkshire
S11 9AS

Contact(s):
Geo
Stefani Ellis

Project 41623 Hogwood Farm, Arborfield

Quotation No.: Date Received: 31-Jul-2017


Order No.: 41623/RN/SAE Date Instructed: 31-Jul-2017

No. of Samples: 25

Turnaround (Wkdays): 5 Results Due: 04-Aug-2017

Date Approved: 07-Aug-2017

Approved By:

Details: Robert Monk, Technical Development
Chemist

Results - Soil

Client: Eastwood & Partners	Chemtest Job No.:			17-19872	17-19872	17-19872	17-19872	17-19872	17-19872	17-19872	17-19872	17-19872
Quotation No.:	Chemtest Sample ID.:			490582	490583	490584	490585	490586	490588	490589	490590	490591
	Client Sample ID.:			TP2	TP3	TP6	TP7	TP11	TP14	TP17	TP18	TP20
	Sample Type:			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Top Depth (m):			1.70	0.10	0.10	0.10	0.10	0.10	0.10	0.80	0.20
	Date Sampled:			25-Jul-2017	25-Jul-2017	25-Jul-2017	27-Jul-2017	25-Jul-2017	26-Jul-2017	26-Jul-2017	26-Jul-2017	26-Jul-2017
	Asbestos Lab.:			COVENTRY	COVENTRY	COVENTRY			COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD								
ACM Type	U	2192		N/A								
Asbestos Identification	U	2192	%	0.001		No Asbestos Detected	No Asbestos Detected	No Asbestos Detected		No Asbestos Detected		No Asbestos Detected
Moisture	N	2030	%	0.020	16	14	14	14	15	13	15	15
Soil Colour	N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Other Material	N	2040		N/A	NONE	NONE	Roots	Roots	NONE	Roots	Stones	NONE
Soil Texture	N	2040		N/A	Clay	Sand	Sand	Sand	Sand	Sand	Sand	Sand
pH	M	2010		N/A	7.5	7.1	5.8	5.9		4.3	6.3	7.2
Sulphate (2:1 Water Soluble) as SO4	M	2120	g/l	0.010	< 0.010						< 0.010	
Total Sulphur	M	2175	%	0.010	< 0.010						< 0.010	
Sulphate (Acid Soluble)	M	2430	%	0.010	< 0.010						< 0.010	
Arsenic	M	2450	mg/kg	1.0	15	10	8.2	8.3		5.4	7.2	13
Cadmium	M	2450	mg/kg	0.10	< 0.10	0.11	< 0.10	< 0.10		< 0.10	0.11	< 0.10
Chromium	M	2450	mg/kg	1.0	29	19	18	21		18	20	42
Copper	M	2450	mg/kg	0.50	15	8.1	8.6	9.7		7.4	9.2	15
Mercury	M	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Nickel	M	2450	mg/kg	0.50	39	10	8.1	9.1		7.9	9.0	22
Lead	M	2450	mg/kg	0.50	13	17	17	19		20	21	13
Selenium	M	2450	mg/kg	0.20	< 0.20	< 0.20	< 0.20	< 0.20		< 0.20	< 0.20	< 0.20
Zinc	M	2450	mg/kg	0.50	46	28	28	33		28	33	46
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50		< 0.50	< 0.50	< 0.50
Naphthalene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Acenaphthene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Fluorene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Phenanthrene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Anthracene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Fluoranthene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Pyrene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Chrysene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	N	2800	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0

Results - Soil

Client: Eastwood & Partners	Chemtest Job No.:				17-19872	17-19872	17-19872	17-19872	17-19872	17-19872	17-19872	17-19872	17-19872
Quotation No.:	Chemtest Sample ID.:				490582	490583	490584	490585	490586	490588	490589	490590	490591
	Client Sample ID.:				TP2	TP3	TP6	TP7	TP11	TP14	TP17	TP18	TP20
	Sample Type:				SOIL								
	Top Depth (m):				1.70	0.10	0.10	0.10	0.10	0.10	0.10	0.80	0.20
	Date Sampled:				25-Jul-2017	25-Jul-2017	25-Jul-2017	27-Jul-2017	25-Jul-2017	26-Jul-2017	26-Jul-2017	26-Jul-2017	26-Jul-2017
	Asbestos Lab.:				COVENTRY	COVENTRY	COVENTRY	COVENTRY			COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD									
Demeton-O	N	2820	mg/kg	0.20						< 0.20			
Phorate	N	2820	mg/kg	0.20						< 0.20			
Demeton-S	N	2820	mg/kg	0.20						< 0.20			
Disulfoton	N	2820	mg/kg	0.20						< 0.20			
Fenthion	N	2820	mg/kg	0.20						< 0.20			
Trichloronate	N	2820	mg/kg	0.20						< 0.20			
Prothiofos	N	2820	mg/kg	0.20						< 0.20			
Fensulphothion	N	2820	mg/kg	0.20						< 0.20			
Sulprofos	N	2820	mg/kg	0.20						< 0.20			
Azinphos-Methyl	N	2820	mg/kg	0.20						< 0.20			
Coumaphos	N	2820	mg/kg	0.20						< 0.20			
Alpha-HCH	N	2840	mg/kg	0.20						< 0.20			
Gamma-HCH (Lindane)	N	2840	mg/kg	0.20						< 0.20			
Beta-HCH	N	2840	mg/kg	0.20						< 0.20			
Delta-HCH	N	2840	mg/kg	0.20						< 0.20			
Heptachlor	N	2840	mg/kg	0.20						< 0.20			
Aldrin	N	2840	mg/kg	0.20						< 0.20			
Heptachlor Epoxide	N	2840	mg/kg	0.20						< 0.20			
Gamma-Chlordane	N	2840	mg/kg	0.20						< 0.20			
Alpha-Chlordane	N	2840	mg/kg	0.20						< 0.20			
Endosulfan I	N	2840	mg/kg	0.20						< 0.20			
4,4-DDE	N	2840	mg/kg	0.20						< 0.20			
Dieldrin	N	2840	mg/kg	0.20						< 0.20			
Endrin	N	2840	mg/kg	0.20						< 0.20			
4,4-DDD	N	2840	mg/kg	0.20						< 0.20			
Endosulfan II	N	2840	mg/kg	0.20						< 0.20			
Endrin Aldehyde	N	2840	mg/kg	0.20						< 0.20			
4,4-DDT	N	2840	mg/kg	0.20						< 0.20			
Endosulfan Sulphate	N	2840	mg/kg	0.20						< 0.20			
Methoxychlor	N	2840	mg/kg	0.20						< 0.20			
Endrin Ketone	N	2840	mg/kg	0.20						< 0.20			

Results - Soil

Client: Eastwood & Partners	Chemtest Job No.:			17-19872	17-19872	17-19872	17-19872	17-19872	17-19872	17-19872	17-19872	17-19872
Quotation No.:	Chemtest Sample ID.:			490592	490593	490594	490595	490596	490597	490598	490599	490600
	Client Sample ID.:			TP21	TP23	TP25	TP27	TP27	TP29	TP30	TP31	TP35
	Sample Type:			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Top Depth (m):			0.70	0.10	0.30	0.10	0.60	1.30	0.10	0.40	0.10
	Date Sampled:			26-Jul-2017	26-Jul-2017	26-Jul-2017	27-Jul-2017	27-Jul-2017	26-Jul-2017	27-Jul-2017	27-Jul-2017	27-Jul-2017
	Asbestos Lab:			COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD								
ACM Type	U	2192		N/A				-			-	
Asbestos Identification	U	2192	%	0.001				No Asbestos Detected			No Asbestos Detected	
Moisture	N	2030	%	0.020	13	16	14	18	15	18	17	8.9
Soil Colour	N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Other Material	N	2040		N/A	NONE	NONE	NONE	NONE	NONE	NONE	NONE	Stones
Soil Texture	N	2040		N/A	Sand	Sand	Sand	Clay	Clay	Sand	Sand	Sand
pH	M	2010		N/A	7.2	6.6	6.6	6.3	6.6	7.4	6.7	7.2
Sulphate (2:1 Water Soluble) as SO4	M	2120	g/l	0.010	< 0.010		< 0.010		< 0.010	< 0.010		< 0.010
Total Sulphur	M	2175	%	0.010	< 0.010		0.026		< 0.010	< 0.010		< 0.010
Sulphate (Acid Soluble)	M	2430	%	0.010	< 0.010		< 0.010		< 0.010	< 0.010		< 0.010
Arsenic	M	2450	mg/kg	1.0	9.9	9.0	2.5	5.7	7.7	7.9	4.2	4.2
Cadmium	M	2450	mg/kg	0.10	< 0.10	0.12	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chromium	M	2450	mg/kg	1.0	32	22	8.9	16	19	23	7.7	10
Copper	M	2450	mg/kg	0.50	13	9.5	4.6	6.3	6.4	9.7	8.4	2.1
Mercury	M	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	M	2450	mg/kg	0.50	26	8.9	4.1	6.6	8.6	30	3.5	5.3
Lead	M	2450	mg/kg	0.50	11	17	9.1	15	9.7	8.3	22	6.8
Selenium	M	2450	mg/kg	0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Zinc	M	2450	mg/kg	0.50	43	34	16	23	23	27	36	14
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Naphthalene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.10	< 0.10
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.16	< 0.10
Acenaphthene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.94	< 0.10
Anthracene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.20	< 0.10
Fluoranthene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	1.7	< 0.10
Pyrene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	1.5	< 0.10
Benzo[a]anthracene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	0.11	< 0.10	< 0.10	0.73	< 0.10
Chrysene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	0.10	< 0.10	< 0.10	0.70	< 0.10
Benzo[b]fluoranthene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.98	< 0.10
Benzo[k]fluoranthene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.24	< 0.10
Benzo[a]pyrene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.79	< 0.10
Indeno(1,2,3-c,d)Pyrene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.45	< 0.10
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.48	< 0.10
Total Of 16 PAH's	N	2800	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	9.0	< 2.0

Results - Soil

Client: Eastwood & Partners	Chemtest Job No.:		17-19872	17-19872	17-19872	17-19872	17-19872	17-19872	17-19872	17-19872	17-19872
Quotation No.:	Chemtest Sample ID.:		490592	490593	490594	490595	490596	490597	490598	490599	490600
	Client Sample ID.:		TP21	TP23	TP25	TP27	TP27	TP29	TP30	TP31	TP35
	Sample Type:		SOIL								
	Top Depth (m):		0.70	0.10	0.30	0.10	0.60	1.30	0.10	0.40	0.10
	Date Sampled:		26-Jul-2017	26-Jul-2017	26-Jul-2017	27-Jul-2017	27-Jul-2017	26-Jul-2017	27-Jul-2017	27-Jul-2017	27-Jul-2017
	Asbestos Lab:		COVENTRY								
Determinand	Accred.	SOP	Units	LOD							
Demeton-O	N	2820	mg/kg	0.20							
Phorate	N	2820	mg/kg	0.20							
Demeton-S	N	2820	mg/kg	0.20							
Disulfoton	N	2820	mg/kg	0.20							
Fenthion	N	2820	mg/kg	0.20							
Trichloronate	N	2820	mg/kg	0.20							
Prothiofos	N	2820	mg/kg	0.20							
Fensulphothion	N	2820	mg/kg	0.20							
Sulprofos	N	2820	mg/kg	0.20							
Azinphos-Methyl	N	2820	mg/kg	0.20							
Coumaphos	N	2820	mg/kg	0.20							
Alpha-HCH	N	2840	mg/kg	0.20							
Gamma-HCH (Lindane)	N	2840	mg/kg	0.20							
Beta-HCH	N	2840	mg/kg	0.20							
Delta-HCH	N	2840	mg/kg	0.20							
Heptachlor	N	2840	mg/kg	0.20							
Aldrin	N	2840	mg/kg	0.20							
Heptachlor Epoxide	N	2840	mg/kg	0.20							
Gamma-Chlordane	N	2840	mg/kg	0.20							
Alpha-Chlordane	N	2840	mg/kg	0.20							
Endosulfan I	N	2840	mg/kg	0.20							
4,4-DDE	N	2840	mg/kg	0.20							
Dieldrin	N	2840	mg/kg	0.20							
Endrin	N	2840	mg/kg	0.20							
4,4-DDD	N	2840	mg/kg	0.20							
Endosulfan II	N	2840	mg/kg	0.20							
Endrin Aldehyde	N	2840	mg/kg	0.20							
4,4-DDT	N	2840	mg/kg	0.20							
Endosulfan Sulphate	N	2840	mg/kg	0.20							
Methoxychlor	N	2840	mg/kg	0.20							
Endrin Ketone	N	2840	mg/kg	0.20							

Results - Soil

Client: Eastwood & Partners	Chemtest Job No.:			17-19872	17-19872	17-19872	17-19872	17-19872	17-19872	17-19872
Quotation No.:	Chemtest Sample ID.:			490601	490602	490603	490604	490605	490606	490607
	Client Sample ID.:			TP36	TP37	TP39	TP41	TP42	TP43	TP45
	Sample Type:			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Top Depth (m):			0.10	0.10	0.10	0.20	1.00	0.10	0.70
	Date Sampled:			27-Jul-2017	26-Jul-2017	26-Jul-2017	27-Jul-2017	27-Jul-2017	27-Jul-2017	27-Jul-2017
	Asbestos Lab:			COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD						
ACM Type	U	2192		N/A	-			-		
Asbestos Identification	U	2192	%	0.001	No Asbestos Detected			No Asbestos Detected		
Moisture	N	2030	%	0.020	15	16	20	17	19	13
Soil Colour	N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown
Other Material	N	2040		N/A	Stones	NONE	Stones	Stones	NONE	NONE, 490W06
Soil Texture	N	2040		N/A	Sand	Sand	Sand	Clay	Sand	Clay
pH	M	2010		N/A	6.0	6.3		7.2	7.3	6.4
Sulphate (2:1 Water Soluble) as SO4	M	2120	g/l	0.010				< 0.010		< 0.010
Total Sulphur	M	2175	%	0.010				0.010		< 0.010
Sulphate (Acid Soluble)	M	2430	%	0.010				< 0.010		< 0.010
Arsenic	M	2450	mg/kg	1.0	7.7	6.2		8.3	31	5.3
Cadmium	M	2450	mg/kg	0.10	0.11	< 0.10		0.30	0.12	0.18
Chromium	M	2450	mg/kg	1.0	22	18		22	24	15
Copper	M	2450	mg/kg	0.50	7.4	7.7		20	13	14
Mercury	M	2450	mg/kg	0.10	< 0.10	< 0.10		0.11	< 0.10	< 0.10
Nickel	M	2450	mg/kg	0.50	7.7	7.8		9.4	53	8.5
Lead	M	2450	mg/kg	0.50	24	17		23	9.9	20
Selenium	M	2450	mg/kg	0.20	< 0.20	< 0.20		< 0.20	< 0.20	< 0.20
Zinc	M	2450	mg/kg	0.50	31	28		49	43	33
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50		< 0.50	< 0.50	< 0.50
Naphthalene	M	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Acenaphthene	M	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Fluorene	M	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Phenanthrene	M	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Anthracene	M	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Fluoranthene	M	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Pyrene	M	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	M	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Chrysene	M	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	M	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	M	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	M	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	M	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	M	2800	mg/kg	0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	N	2800	mg/kg	2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0

Results - Soil

Client: Eastwood & Partners	Chemtest Job No.:		17-19872	17-19872	17-19872	17-19872	17-19872	17-19872	17-19872
Quotation No.:	Chemtest Sample ID.:		490601	490602	490603	490604	490605	490606	490607
	Client Sample ID.:		TP36	TP37	TP39	TP41	TP42	TP43	TP45
	Sample Type:		SOIL						
	Top Depth (m):		0.10	0.10	0.10	0.20	1.00	0.10	0.70
	Date Sampled:		27-Jul-2017	26-Jul-2017	26-Jul-2017	27-Jul-2017	27-Jul-2017	27-Jul-2017	27-Jul-2017
	Asbestos Lab:		COVENTRY						
Determinand	Accred.	SOP	Units	LOD					
Demeton-O	N	2820	mg/kg	0.20		< 0.20			
Phorate	N	2820	mg/kg	0.20		< 0.20			
Demeton-S	N	2820	mg/kg	0.20		< 0.20			
Disulfoton	N	2820	mg/kg	0.20		< 0.20			
Fenthion	N	2820	mg/kg	0.20		< 0.20			
Trichloronate	N	2820	mg/kg	0.20		< 0.20			
Prothiofos	N	2820	mg/kg	0.20		< 0.20			
Fensulphothion	N	2820	mg/kg	0.20		< 0.20			
Sulprofos	N	2820	mg/kg	0.20		< 0.20			
Azinphos-Methyl	N	2820	mg/kg	0.20		< 0.20			
Coumaphos	N	2820	mg/kg	0.20		< 0.20			
Alpha-HCH	N	2840	mg/kg	0.20		< 0.20			
Gamma-HCH (Lindane)	N	2840	mg/kg	0.20		< 0.20			
Beta-HCH	N	2840	mg/kg	0.20		< 0.20			
Delta-HCH	N	2840	mg/kg	0.20		< 0.20			
Heptachlor	N	2840	mg/kg	0.20		< 0.20			
Aldrin	N	2840	mg/kg	0.20		< 0.20			
Heptachlor Epoxide	N	2840	mg/kg	0.20		< 0.20			
Gamma-Chlordane	N	2840	mg/kg	0.20		< 0.20			
Alpha-Chlordane	N	2840	mg/kg	0.20		< 0.20			
Endosulfan I	N	2840	mg/kg	0.20		< 0.20			
4,4-DDE	N	2840	mg/kg	0.20		< 0.20			
Dieldrin	N	2840	mg/kg	0.20		< 0.20			
Endrin	N	2840	mg/kg	0.20		< 0.20			
4,4-DDD	N	2840	mg/kg	0.20		< 0.20			
Endosulfan II	N	2840	mg/kg	0.20		< 0.20			
Endrin Aldehyde	N	2840	mg/kg	0.20		< 0.20			
4,4-DDT	N	2840	mg/kg	0.20		< 0.20			
Endosulfan Sulphate	N	2840	mg/kg	0.20		< 0.20			
Methoxychlor	N	2840	mg/kg	0.20		< 0.20			
Endrin Ketone	N	2840	mg/kg	0.20		< 0.20			

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	pH	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2820	Organophosphorus (O-P) Pesticides in Soils by GC-MS	Organophosphorus pesticide representative suite including Parathion, Malathion etc, plus client specific determinands	Dichloromethane extraction / GC-MS
2840	Organochlorine (O-Cl) Pesticides in Soils by GC-MS	Organochlorine pesticide representative suite including DDT and its metabolites, 'drins' and HCH etc, plus client specific determinands	Dichloromethane extraction / GC-MS

Report Information

Key

U	UKAS accredited
M	MCERTS and UKAS accredited
N	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
T	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A - Date of sampling not supplied
- B - Sample age exceeds stability time (sampling to extraction)
- C - Sample not received in appropriate containers
- D - Broken Container
- E - Insufficient Sample

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to:

customerservices@chemtest.co.uk

Inorganic Compounds	Human Health - Residential with Homegrown Produce (mg/kg)
Arsenic	37
Cadmium	11
Chromium (III)	910
Chromium (VI)	6
Lead	200
Mercury	1.2
Nickel	180
Selenium	250
Copper	2400
Zinc	3700

Organic Compounds	Human Health - Residential with Homegrown Produce (mg/kg)		
	1% SOM	2.5% SOM	6% SOM
Naphthalene	2.3	5.6	13
Acenaphthene	210	510	1100
Acenaphthylene	170	420	920
Fluorene	170	400	860
Phenanthrene	95	220	440
Anthracene	2400	5400	11000
Fluoranthene	280	560	890
Pyrene	620	1200	2000
Benzo(a)anthracene	7.2	11	13
Chrysene	15	22	27
Benzo(b)fluoranthene	2.6	3.3	3.7
Benzo(k)fluoranthene	77	93	100
Benzo(a)pyrene	2.2	2.7	3.0
Dibenz(a,h)anthracene	0.24	0.28	0.3
Indeno(1,2,3-cd)pyrene	27	36	41
Benzo(g,h,i)perylene	320	340	350
Benzene	0.087	0.17	0.37
Toluene	130	290	660
Ethylbenzene	47	110	260
o-Xylene	60	140	330
m-Xylene	59	140	320
p-Xylene	56	130	310

Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3153. All rights reserved.

Prepared	KB	Checked	RAN	Date	27.09.2022	Job No	41623
----------	----	---------	-----	------	------------	--------	-------

 St Andrew's House 23 Kingfield Road Sheffield S11 9AS	PARCEL 15 HOGWOOD FARM (FINCHWOOD PARK)
	CALA HOMES THAMES AND LEGAL & GENERAL HOMES LIMITED
	ASSESSMENT CRITERIA – RESIDENTIAL WITH HOMEGROWN PRODUCE

Tel: (0114) 255 4554 Fax: (0114) 255 4330

Contaminant	Phytotoxicity			
	pH 5.0 to 5.5	pH 5.5 to 6.0	pH 6.0 to 7.0	pH >7.0
Arsenic	50			
Cadmium	3			
Chromium	400			
Lead	300			
Mercury	1			
Nickel	50	60	75	110
Copper	80	100	135	200
Zinc	200	200	200	300

The assessment concentration for lead is the Category 4 Screening Level produced by Contaminated Land: Applications in Real Environments (CL:AIRE) and outlined in Appendix H of their report SP1010. The others have been taken from Nathanail, C. P., McCaffrey, C., Gillett, A., Ogden, R., and Nathanail, J., 2015, '*The LQM/CIEH S4ULs for Human Health Risk Assessment*', Land Quality Press, Nottingham. The metals/metalloids are based on a sandy loam soil and 6% soil organic matter. The assessment values are not intended to be applied to individual sample results where materials are similar, as the levels of contaminants will have a natural variability across the site. Instead, the modified mean value should be compared with the assessment concentration.

The assessment values for phytotoxicity are the levels at which plant growth is thought to be affected. They are taken from the maximum permissible and advisable concentrations in soil after application of soil sludge given in the '*The Code of Good Agricultural Practice for the Protection of Soil*', MAFF, 1998.

The assessment of sulphate, water soluble sulphate, elemental sulphur and sulphide is to determine the aggressive nature of the ground with respect to concrete and consequently the results are compared with BRE Special Digest 1:2005 '*Concrete in Aggressive Ground*'.

Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3153. All rights reserved.

Prepared	KB	Checked	RAN	Date	27.09.2022	Job No	41623
----------	----	---------	-----	------	------------	--------	-------

 St Andrew's House 23 Kingfield Road Sheffield S11 9AS Tel: (0114) 255 4554 Fax: (0114) 255 4330	PARCEL 15 HOGWOOD FARM (FINCHWOOD PARK) CALA HOMES THAMES AND LEGAL & GENERAL HOMES LIMITED ASSESSMENT CRITERIA – RESIDENTIAL WITH HOMEGROWN PRODUCE
--	---

TPH Fraction	Intended Land Use Residential (mg/kg)		
	1% SOM	2.5% SOM	6% SOM
Aliphatic EC 5-6	42	78	160
Aliphatic EC >6-8	100	230	530
Aliphatic EC >8-10	27	65	150
Aliphatic EC >10-12	130 (48) ^{vap}	330 (118) ^{vap}	760 (283) ^{vap}
Aliphatic EC >12-16	1100 (24) ^{sol}	2400 (59) ^{sol}	4,300 (142) ^{sol}
Aliphatic EC >16-35	65,000 (8.48) ^{f,sol}	92,000 (21) ^{f,sol}	110,000 ^f
Aliphatic EC >35-44	65,000 (8.48) ^{f, sol}	92,000 (21) ^{f,sol}	110,000 ^f
Aromatic EC 5-7	70	140	300
Aromatic EC >7-8	130	290	660
Aromatic EC >8-10	34	83	190
Aromatic EC >10-12	74	180	380
Aromatic EC >12-16	140	330	660
Aromatic EC >16-21	260 ^f	540 ^f	930 ^f
Aromatic EC >21-35	1,100 ^f	1,500 ^f	1,700 ^f
Aromatic EC >35-44	1,100 ^f	1,500 ^f	1,700 ^f

^f oral, dermal, and inhalation exposure compared with oral HCV

^{sol} S4UL presented exceeds the solubility saturation limit, which is presented in brackets

^{vap} S4UL presented exceed the vapour saturation limit, which is presented in brackets

The assessment criteria for each of the petroleum hydrocarbon fractions have been taken from Nathanail, C. P., McCaffrey, C., Gillett, A., Ogden, R., and Nathanail, J., 2015, 'The LQM/CIEH S4ULs for Human Health Risk Assessment', Land Quality Press, Nottingham. These are also all based on a sandy loam soil.

Within the Environment Agency Science Report P5-080/TR3, Askari, K. & Pollard, S., 2005 'The UK Approach for Evaluating Human Health Risks from Petroleum Hydrocarbons in Soils' it is stated that the assessment values should not be considered individually; instead the potential additive effects should be calculated. This is achieved by calculating an individual Hazard Quotient (HQ) for each fraction. The HQ is the proportion of the assessment concentration represented by the recorded concentration. The HQs are then added together to form a Hazard Index (HI) and where this exceeds unity a potential significant risk to human health may exist.

Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3153. All rights reserved.

Prepared	KB	Checked	RAN	Date	27.09.2022	Job No	41623
----------	----	---------	-----	------	------------	--------	-------

 St Andrew's House 23 Kingfield Road Sheffield S11 9AS	PARCEL 15 HOGWOOD FARM (FINCHWOOD PARK)
	CALA HOMES THAMES AND LEGAL & GENERAL HOMES LIMITED
	ASSESSMENT CRITERIA – RESIDENTIAL WITH HOMEGROWN PRODUCE

Tel: (0114) 255 4554 Fax: (0114) 255 4330

Appendix 5

Geotechnical Test Results (GEO/39228)

Eastwood and Partners (Consulting Engineers) Limited

Gander Down Barns
Rodfield Lane
Ovington
Alresford
SO24 0HS

GEOLABS Limited
Bucknalls Lane
Garston
Watford
Hertfordshire
WD25 9XX

Tel: +44(0) 1923 892 190
Fax: +44(0) 1923 892 191
email: admin@geolabs.co.uk
web: www.geolabs.co.uk

22 November 2023

Report No : GEO/39228/01

Page 1 of 1

For the attention of Ms M Ebling

Our ref **GEO / 39228**

Your Ref **41623**

Project **FINCHAMPSTEAD - PARCEL 4 AND 10**

Further to your instructions we have pleasure in enclosing the results of the tests you requested in the attached figures.

LABORATORY TEST REPORT

Item No	Test Quantity	Description
1	~	Geotechnical Test Summary
2	~	Liquid & Plastic Limits Summary
	11	Water Content
	11	Liquid & Plastic Limits
3	7	Unconsolidated Undrained Triaxial Compression
4	~	Geochemical Test Summary
~	10	BRE SD1 Suite B - Natural ground + pyrite

Any opinions or interpretations expressed herein are outside the scope of UKAS accreditation. All results contained in this report are provisional unless signed by an approved signatory. The results contained in this report relate only to samples received in the laboratory and are tested 'as received' unless otherwise stated. This report should not be reproduced, except in full, without the written approval of the laboratory. The results reported are applicable only to the test items received by the laboratory.

All the necessary data required by the documented test procedures has been recorded and will be stored for a period of not less than 6 years. This data will be issued to yourselves at your request. All samples will be disposed of after the date shown above. Written confirmation will be required to retain the samples beyond this period and a storage charge may be applied.

We trust that the above meets your requirements and should you require any further information or assistance, please do not hesitate to contact us.

Yours faithfully

on behalf of **GEOLABS Limited**

S Burke
Senior Technician

SUMMARY OF GEOTECHNICAL TESTING

Sample details					Classification Tests					Density Tests		Undrained Triaxial Compression				Chemical Tests			Other tests and comments
Location	Depth (m)	Sample Ref	Type	Description	WC	LL	PL	PI	<425 µm	Bulk	Dry	Condition	Cell Pressure	Deviator Stress	Shear Stress	pH	2:1 W/S SO4	W/S Mg	
					%	%	%	%	%	Mg/m³	Mg/m³	kPa	kPa	kPa	kPa	g/L	mg/L		
BH203	5.00		D															BRE Suite B	
BH203	6.00-6.45		U	Very stiff dark brown clayey SILT with rare shell fragments.	21.1					2.11	1.74	Undisturbed	120	327	164				BRE Suite B
BH203	12.00-12.45		U	Very stiff dark brown clayey SILT.	21.7					2.10	1.73	Undisturbed	240	541	271				BRE Suite B
BH204	9.00-9.45		U	Very stiff dark brown silty CLAY with rare shell fragments.	22.3					2.13	1.74	Undisturbed	180	386	193				BRE Suite B
BH204	15.00-15.45		U	Very stiff dark brown mottled dark grey silty CLAY.	25.9					2.07	1.64	Undisturbed	300	311	155				BRE Suite B
BH205	6.50		D															BRE Suite B	
BH205	12.00-12.45		U	Very stiff dark brown silty CLAY.	24.1					2.08	1.68	Undisturbed	240	426	213				BRE Suite B
BH205	15.00		D															BRE Suite B	
BH206	8.00-8.45		U	Very stiff dark brown silty CLAY.	22.1					2.11	1.73	Undisturbed	160	481	241				BRE Suite B
BH206	16.00-16.45		U	Very stiff dark brown silty CLAY.	27.7					2.05	1.60	Undisturbed	320	315	157				BRE Suite B

Sample type: B (Bulk disturb.) BLK (Block) C (Core) D (Disturbed) LB (Large Bulk dist.) U (Undisturbed)

Checked and Approved by	Project Number:
GEO / 39228	
Project Name:	
FINCHAMPSTEAD - PARCEL 4 AND 10	
41623	
S Burke - Senior Technician 07/12/2023	

FINCHAMPSTEAD - PARCEL 4 AND 10
41623

GEOLABS®

SUMMARY OF GEOTECHNICAL TESTING

Sample details					Classification Tests					Density Tests		Undrained Triaxial Compression				Chemical Tests			Other tests and comments
Location	Depth (m)	Sample Ref	Type	Description	WC	LL	PL	PI	<425 µm	Bulk	Dry	Condition	Cell Pressure	Deviator Stress	Shear Stress	pH	2:1 W/S SO4	W/S Mg	
					%	%	%	%	%	Mg/m³	Mg/m³	kPa	kPa	kPa	kPa	g/L	mg/L		
TP720	1.50		D	Brown mottled brownish grey silty CLAY.	23.5	45	19	26	100										
TP721	1.00		D	Brown mottled brownish grey and orangish brown silty CLAY.	24.3	44	20	24	100										
TP721	2.10		D	Brown mottled orangish brown silty CLAY.	23.2	40	19	21	100										
TP722	0.90		D	Brown mottled orangish brown silty CLAY.	24.3	45	20	25	100										
TP723	1.30		D	Brown mottled orangish brown greyish brown slightly sandy silty CLAY. Sand is fine.	22.3	46	17	29	100										
TP723	2.10		D	Brown silty CLAY.	25.2	39	21	18	100										
TP724	1.10		D	Brown mottled brownish grey orangish brown silty CLAY with rare fine to medium gravel.	23.2	45	18	27	100										
TP724	2.50		D	Brown silty CLAY.	24.7	37	19	18	100										
TP725	0.90		D	Brown mottled orangish brown brownish grey silty CLAY.	24.3	40	20	20	100										
TP726	1.00		D	Brown mottled greyish brown silty CLAY.	23.3	47	19	28	100										

Sample type: B (Bulk disturb.) BLK (Block) C (Core) D (Disturbed) LB (Large Bulk dist.) U (Undisturbed)

Checked and Approved by

S Burke - Senior Technician
07/12/2023

Project Number:

GEO / 39228

Project Name:

FINCHAMPSTEAD - PARCEL 4 AND 10
41623

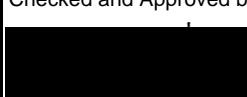
SUMMARY OF GEOTECHNICAL TESTING

Sample type: B (Bulk disturb.) BLK (Block) C (Core) D (Disturbed) LB (Large Bulk dist.) U (Undisturbed)

Checked and Approved by

Project Number:

GEO / 39228


Project Name:

S Burke - Senior Technician
07/12/2023

GEOLABS

SUMMARY OF LIQUID AND PLASTIC LIMIT TESTS

Location	Depth m	Sample Ref	Sample Type	Description	Water Content BS EN ISO 17892-1 : 2014 +A1:2022	Liquid Limit	Plastic Limit	Plasticity Index	Percentage Passing 425µm	Atterberg Classification	Test Type	Sample Condition
					%	%	%	%	%			
TP720	1.50		D	Brown mottled brownish grey silty CLAY.	23.5	45	19	26	100	CI	2	1
TP721	1.00		D	Brown mottled brownish grey and orangish brown silty CLAY.	24.3	44	20	24	100	CI	2	1
TP721	2.10		D	Brown mottled orangish brown silty CLAY.	23.2	40	19	21	100	CI	2	1
TP722	0.90		D	Brown mottled orangish brown silty CLAY.	24.3	45	20	25	100	CI	2	1
TP723	1.30		D	Brown mottled orangish brown greyish brown slightly sandy silty CLAY. Sand is fine.	22.3	46	17	29	100	CI	2	1
TP723	2.10		D	Brown silty CLAY.	25.2	39	21	18	100	CI	2	1
TP724	1.10		D	Brown mottled brownish grey orangish brown silty CLAY with rare fine to medium gravel.	23.2	45	18	27	100	CI	2	1
TP724	2.50		D	Brown silty CLAY.	24.7	37	19	18	100	CI	2	1
TP725	0.90		D	Brown mottled orangish brown brownish grey silty CLAY.	24.3	40	20	20	100	CI	2	1
TP726	1.00		D	Brown mottled greyish brown silty CLAY.	23.3	47	19	28	100	CI	2	1
TP727	2.60		D	Brown brownish grey orangish brown silty CLAY.	24.6	41	19	22	100	CI	2	1
Test Type: 2 - 4 point 80g / 30° fall cone method.				Sample condition: 1 - As Received 2 - Air Dried 3 - Washed & Air Dried								

SUMMARY OF CHEMICAL TESTS ON SOIL

Tested by Eurofins Chemtest Ltd : MCERTS / UKAS No 2183

Checked and Approved by: 	Project Number: GEO / 39228	
Project Name: FINCHAMPSTEAD - PARCEL 4 AND 10 41623		GEOLABS ®
S Burke - Senior Technician 07/12/2023		

UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION

Location BH203
Depth (m) 6.00-6.45
Sample Type U

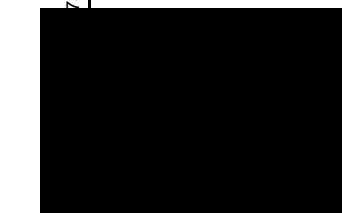
Description:

Very stiff dark brown clayey SILT with rare shell fragments.

Specimen Details

Specimen conditions	Undisturbed
Length (mm)	200.7
Diameter (mm)	101.9
Water content (%)	21.1
Bulk density (Mg/m ³)	2.11
Dry density (Mg/m ³)	1.74
Test Details	
Latex membrane thickness (mm)	0.3
Specimen height prior to shearing (mm)	200.7
Membrane correction (kPa)	0.5
Mean rate of shear (%/min)	2.0
Cell pressure (kPa)	120
Strain at failure (%)	7.5
Maximum deviator stress (kPa)	327
Shear Stress Cu (kPa)	164

Mode of failure



Orientation of the sample	Vertical
Distance from top of tube mm	70

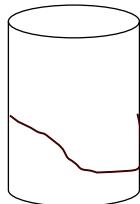
Project Number:

GEO / 39228

Project Name:

FINCHAMPSTEAD - PARCEL 4 AND 10

UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION


Location BH203
 Depth (m) 12.00-12.45
 Sample Type U

Description:
 Very stiff dark brown clayey SILT.

Specimen Details

Specimen conditions	Undisturbed
Length (mm)	201.0
Diameter (mm)	101.9
Water content (%)	21.7
Bulk density (Mg/m ³)	2.10
Dry density (Mg/m ³)	1.73
Test Details	
Latex membrane thickness (mm)	0.3
Specimen height prior to shearing (mm)	201.0
Membrane correction (kPa)	0.4
Mean rate of shear (%/min)	2.0
Cell pressure (kPa)	240
Strain at failure (%)	6.0
Maximum deviator stress (kPa)	541
Shear Stress Cu (kPa)	271

Mode of failure

Orientation of the sample	Vertical
Distance from top of tube mm	60

31

Project Number:

GEO / 39228

Project Name:

**FINCHAMPSTEAD - PARCEL 4 AND 10
41623**

UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION

Location BH204
 Depth (m) 9.00-9.45
 Sample Type U

Description:

Very stiff dark brown silty CLAY with rare shell fragments.

Specimen Details

Specimen conditions	Undisturbed
Length (mm)	200.7
Diameter (mm)	101.7
Water content (%)	22.3
Bulk density (Mg/m ³)	2.13
Dry density (Mg/m ³)	1.74

Test Details	
Latex membrane thickness (mm)	0.3
Specimen height prior to shearing (mm)	200.7
Membrane correction (kPa)	0.8
Mean rate of shear (%/min)	2.0
Cell pressure (kPa)	180
Strain at failure (%)	13.5
Maximum deviator stress (kPa)	386
Shear Stress Cu (kPa)	193

Mode of failure

Orientation of the sample	Vertical
Distance from top of tube mm	80

Tested by PS
 Checked and Approved by
 [Redacted]
 S Burke - Senior Technician
 07/12/2023

Project Number:

GEO / 39228

Project Name:

**FINCHAMPSTEAD - PARCEL 4 AND 10
 41623**

UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION

Location BH204
 Depth (m) 15.00-15.45
 Sample Type U

Description:

Very stiff dark brown mottled dark grey silty CLAY.

Specimen Details

Specimen conditions	Undisturbed
Length (mm)	201.0
Diameter (mm)	102.1
Water content (%)	25.9
Bulk density (Mg/m ³)	2.07
Dry density (Mg/m ³)	1.64

Test Details	
Latex membrane thickness (mm)	0.3
Specimen height prior to shearing (mm)	201.0
Membrane correction (kPa)	1.1
Mean rate of shear (%/min)	2.0
Cell pressure (kPa)	300
Strain at failure (%)	19.9
Maximum deviator stress (kPa)	311
Shear Stress Cu (kPa)	155

Mode of failure

Orientation of the sample	Vertical
Distance from top of tube mm	80

UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION

Location BH205
 Depth (m) 12.00-12.45
 Sample Type U

Description:

Very stiff dark brown silty CLAY.

Specimen Details

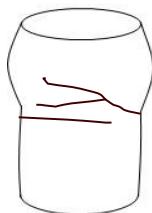
Specimen conditions	Undisturbed
Length (mm)	200.7
Diameter (mm)	102.2
Water content (%)	24.1
Bulk density (Mg/m ³)	2.08
Dry density (Mg/m ³)	1.68

Test Details	
Latex membrane thickness (mm)	0.3
Specimen height prior to shearing (mm)	200.7
Membrane correction (kPa)	0.8
Mean rate of shear (%/min)	2.0
Cell pressure (kPa)	240
Strain at failure (%)	12.5
Maximum deviator stress (kPa)	426
Shear Stress Cu (kPa)	213

Mode of failure

Orientation of the sample	Vertical
Distance from top of tube mm	180

UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION


Location BH206
 Depth (m) 8.00-8.45
 Sample Type U

Description:
 Very stiff dark brown silty CLAY.

Specimen Details

Specimen conditions	Undisturbed
Length (mm)	201.0
Diameter (mm)	101.7
Water content (%)	22.1
Bulk density (Mg/m ³)	2.11
Dry density (Mg/m ³)	1.73
Test Details	
Latex membrane thickness (mm)	0.3
Specimen height prior to shearing (mm)	201.0
Membrane correction (kPa)	1.0
Mean rate of shear (%/min)	2.0
Cell pressure (kPa)	160
Strain at failure (%)	16.9
Maximum deviator stress (kPa)	481
Shear Stress Cu (kPa)	241

Mode of failure

Orientation of the sample	Vertical
Distance from top of tube mm	90

Project Number:

GEO / 39228

Project Name:

FINCHAMPSTEAD - PARCEL 4 AND 10**41623**

UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION

Location BH206
 Depth (m) 16.00-16.45
 Sample Type U

Description:

Very stiff dark brown silty CLAY.

Specimen Details

Specimen conditions	Undisturbed
Length (mm)	201.0
Diameter (mm)	101.8
Water content (%)	27.7
Bulk density (Mg/m ³)	2.05
Dry density (Mg/m ³)	1.60
Test Details	
Latex membrane thickness (mm)	0.3
Specimen height prior to shearing (mm)	201.0
Membrane correction (kPa)	0.7
Mean rate of shear (%/min)	2.0
Cell pressure (kPa)	320
Strain at failure (%)	10.0
Maximum deviator stress (kPa)	315
Shear Stress Cu (kPa)	157

Mode of failure

Orientation of the sample	Vertical
Distance from top of tube mm	80

Tested by PS

S Burke - Senior Technician
07/12/2023

Project Number:

GEO / 39228

Project Name:

**FINCHAMPSTEAD - PARCEL 4 AND 10
41623****GEOLABS**®

Eastwood

CONSULTING ENGINEERS

St Andrew's House

23 Kingfield Road

Sheffield, S11 9AS

mail@eastwoodce.com

0114 255 4554

eastwoodce.com