

Field Place Farm
Temple Combe
Henley-on-Thames
Berkshire
RG9 3HR

Preliminary Roost Assessment

Report ref.: R2021_PRA_b

Report Quality Control Information	
Author	Verity West Qualifying Member of CIEEM
Reviewer	Sarah Foot MCIEEM

November 2025

1 Diesel House, Honey Hill, Wokingham, Berkshire RG40 3BL
Telephone: 0118 3271810 Mobile: 07979 403099 E-mail: info@wenman-ecology.co.uk
www.wenman-ecology.co.uk

John Wenman Ecological Consultancy LLP is a limited liability partnership registered in England and Wales with registered number OC339057. Registered office: 100 New Wokingham Road, Crowthorne, Berkshire RG45 6JP where you may look at a list of members' names.

CONTENTS PAGE

1	EXECUTIVE SUMMARY	3
2	INTRODUCTION.....	4
2.1	Project Background.....	4
2.2	Site Location and Context.....	4
2.3	Report Objectives	4
3	LEGISLATIVE AND POLICY BACKGROUND	5
3.1	Relevant Legislation.....	5
3.2	Planning Policy	5
3.3	Mitigation Licensing	6
4	SURVEY METHODOLOGY	7
4.1	Desk Study	7
4.2	Building Inspection.....	7
5	SURVEY RESULTS.....	10
5.1	Desk Study	10
5.2	Building Inspection.....	10
6	DISCUSSION	17
6.1	Assessment of Roost Suitability.....	17
6.2	Assessment of Roost Status.....	17
7	IMPACT ASSESSMENT	19
7.1	Potential Impacts of Development Proposals	19
7.2	Recommended Actions.....	19
8	RECOMMENDATIONS	20
8.1	Further Survey	20
8.2	Indicative Mitigation Strategy	20
9	REFERENCES	22
APPENDIX 1 – POTENTIAL SUITABILITY CATEGORIES FOR ROOSTING BATS		23
APPENDIX 2 – DEFINITION OF BAT ROOST TYPES		24
APPENDIX 3 – FURTHER SURVEY RATIONALE		25
APPENDIX 4 – PROPOSED PLANS		26

1 EXECUTIVE SUMMARY

- 1.1.1 John Wenman Ecological Consultancy LLP was instructed by Mr John Henderson to undertake a Preliminary Roost Assessment (PRA) at Field Place Farm in Henley-on-Thames. The PRA was commissioned to accompany a householder planning application to be submitted to Wokingham Borough Council seeking consent for the construction of additional dormers on the front and rear elevations and changes to existing dormers.
- 1.1.2 A detailed inspection of the exterior and interior of the house was undertaken on the 26th February 2025 by Sarah Foot MCIEEM (CL18 2015-11906-CLS-CLS) and assistant ecologist Verity West.
- 1.1.3 At least 100 medium-sized bat droppings (likely brown long-eared bat) were scattered throughout the roof void with notable accumulations under the ridge beam and stuck to the chimney. Based on the number of droppings and the scale of the void, the house is considered likely to support regular use by individual or small numbers of brown long-eared bats, i.e. a confirmed roost.
- 1.1.4 External features in the roof, under uneven and missing roof tiles, especially around the chimney, around the timber cladding and hanging tiles on the dormers, and behind the timber soffits, provide potential roosting opportunities for small crevice-dwelling bats such as the locally recorded common pipistrelle and soprano pipistrelle. Due to the scale of the potential roost sites in conjunction with the surrounding habitat, the house is considered to have the potential to support large numbers of crevice-dwelling bats more regularly and for longer periods of time, i.e. high potential suitability.
- 1.1.5 The proposed additional dormers and changes to existing dormers, will result in the disturbance of the confirmed roost and in the absence of appropriate mitigation measures, cause disturbance, injury and/or death of any bats in occupancy at the time. The proposed works will also impact the potential roost sites identified.
- 1.1.6 The development proposals do not have scope to be altered to avoid potential adverse effects on bats. Therefore, further survey is recommended to characterise the confirmed roosts and to determine the presence or likely absence of other bat roosts at the property. The recommended survey approach and indicative mitigation proposals are detailed in **Section 8** below.
- 1.1.7 This report contains information regarding a mobile species so it will likely be valid for 12 months only (CIEEM 2019).

2 INTRODUCTION

2.1 Project Background

- 2.1.1** John Wenman Ecological Consultancy LLP was instructed by Mr John Henderson to undertake a Preliminary Roost Assessment (PRA) at Field Place Farm in Henley-on-Thames.
- 2.1.2** The PRA was commissioned to accompany a householder planning application to be submitted to the Wokingham Borough Council seeking consent for the construction of additional dormers on the front and rear elevations and changes to existing dormers.

2.2 Site Location and Context

- 2.2.1** The property is a detached brick and flint residential dwelling at Field Place Farm, set amongst extensive parkland countryside in the valley of the River Thames, near Henley-on-Thames, Berkshire (OS grid reference: SU 78156 81881).
- 2.2.2** The rear garden is wooded and connects to the River Thames, only 690m to the south west offering high quality foraging habitat within close proximity to the property.

2.3 Report Objectives

- 2.3.1** The aim of the PRA is to ascertain if there is evidence of the presence of bats and/or potential for roosting bats to be present, and therefore whether further survey and/or mitigation would be required for the proposed development activities.

3 LEGISLATIVE AND POLICY BACKGROUND

3.1 Relevant Legislation

- 3.1.1** In England and Wales, all bat species found in the wild are fully protected under the Wildlife & Countryside Act 1981 (as amended) (WCA) and Conservation of Habitats and Species Regulations 2017 (as amended); the regulations are commonly referred to as the Habitat Regulations and hereafter referred to as such. The Habitat Regulations refer to European Protected Species (EPS) and all species of bats in the United Kingdom (UK) are EPS. Although the UK left the European Union on the 31st January 2020 and is therefore no longer tied to European legislation, the Habitat Regulations have been retained in their current format.
- 3.1.2** The legal framework underpinned by the WCA and Habitat Regulations makes these specific actions an offence as follows:
- Deliberately kill, injure, capture or take a wild bat;
 - Deliberately, intentionally or recklessly disturb bats; in particular any disturbance which is likely to impair their ability to survive, to breed or reproduce, to rear or nurture their young, to hibernate or migrate, or to significantly affect local distribution or abundance;
 - Damage or destroy a place used by a bat for breeding or resting; and
 - Intentionally or recklessly obstruct access to any place used by a bat for shelter or protection.

3.2 Planning Policy

- 3.2.1** The biodiversity duty imposed through the Environment Act 2021 states that Local Planning Authorities (LPAs) must consider what action they can take to conserve and enhance biodiversity in England. Government planning policy, such as the ODPM Circular 06/2005, requires LPAs to account for the conservation of protected species when considering and determining planning applications.
- 3.2.2** The ODPM Circular 06/2005 states that '*the presence of a protected species is a material consideration when a planning authority is considering a development proposal that, if carried out, would be likely to result in harm to the species or its habitat.*' This policy means that in instances where there is a reasonable likelihood of bats being present and affected by a development, surveys must be undertaken to inform a mitigation strategy to be agreed prior to granting planning permission.

3.3 Mitigation Licensing

- 3.3.1 The government's statutory nature conservation body, Natural England, is responsible for issuing European Protected Species (EPS) mitigation licences that would permit activities that would otherwise lead to an infringement of the Habitat Regulations. An EPS mitigation licence can be issued if the following three tests derived from Regulation 55 have been satisfied:
- (2)(e) – the derogation is for the purposes of '*preserving public health or public safety or other imperative reasons of overriding public interest, including those of a social or economic nature and beneficial consequences of primary importance for the environment.*'
 - (9)(a) – there is '*no satisfactory alternative*' to the derogation; and
 - (9)(b) – '*the action authorised will not be detrimental to the maintenance of the population of the species concerned at a favourable conservation status in their natural range.*'
- 3.3.2 LPAs have a statutory duty under Regulation 7(3)(e) of the Habitat Regulations to consider and determine whether these three tests are likely to be satisfied by planning proposals affecting EPS before granting planning permission. If an EPS mitigation licence is necessary, a licence can be sought once all the necessary planning consents have been granted. Natural England aims to issue a decision on licence applications within 30 working days of submission.
- 3.3.3 The Bat Mitigation Class Licence (BMCL) scheme allows ecologists to apply to become Registered Consultants to use this licence for low conservation status roosts, i.e. roosts comprising small numbers of seven commonly occurring species. A site registration form must be completed as a condition of the licence and submitted to Natural England at least three weeks before the licensable activities are due to start; Natural England aims to register sites within two weeks of submission.
- 3.3.4 Baseline survey information supporting EPS mitigation licence applications or BMCL site registrations must be up-to-date and have been completed within the current or most recent optimal season. A suitably experienced ecologist will be required to undertake a site walkover/check within three months prior to application/registration submission to confirm that conditions have not changed since the most recent survey.

4 SURVEY METHODOLOGY

4.1 Desk Study

4.1.1 A desk-based study for bats was undertaken to collate and review existing information about the site and the surrounding land. The study utilised the following open access resources:

- Google Earth – satellite imagery was used to identify potential flight paths and foraging habitats for bats;
- MAGIC – examined to locate granted European Protected Species licences; and
- Pre-existing bat survey reports – any available reports were obtained from the client or relevant planning portal to provide background information for the site.

4.2 Building Inspection

Survey Details

4.2.1 A detailed inspection of the exterior and interior of the property was undertaken on the 26th February 2025 by Sarah Foot MCIEEM (CL18 2015-11906-CLS-CLS) and assistant ecologist Verity West, in accordance with good practice guidelines (Collins 2023). The equipment used during the inspection comprised binoculars, a high-power (1 million candlepower) LED torch, a headtorch, an industrial endoscopic camera, ladder and PPE (facemask, gloves etc.). The inspection involved a systematic search of the exterior and interior of the structure during daylight hours to compile information on potential and actual bat access points; potential and actual bat roost sites; and any evidence of bat presence.

External Survey

4.2.2 Frequently used bat access points and/or roost sites include (but are not limited to) spaces:

- behind hanging tiles, weatherboarding, soffit boxes and barge boards;
- under lead flashing (particularly around chimneys) and roof tiles/slates; and
- in existing bat boxes.

4.2.3 It is important to note that the two most abundant and widespread bat species, common pipistrelle (*Pipistrellus pipistrellus*) and soprano pipistrelle (*Pipistrellus pygmaeus*), typically only require gaps measuring 15mm by 20mm to gain access to a roost inside a building.

4.2.4 The external survey involved a systematic search for evidence of bats including:

- live or dead specimens;
- droppings;
- urine marks;
- fur-oil staining; and
- squeaking noises.

4.2.5 It should be noted that bats can be present in a building while leaving no visible signs externally and wet weather has the potential to wash any evidence away. The search for evidence was focused on (but was not limited to) the ground, windowsills, windowpanes and walls (including cladding and hanging tiles); particularly in places near to potential bat access points and/or roost sites.

Internal Survey

4.2.6 The internal survey comprised a systematic search for evidence of bats on the upper floors of the building (i.e. checking the exterior from windows) and inside the roof and eave spaces. Evidence of bats found during an internal inspection can include:

- live or dead specimens;
- droppings;
- urine marks;
- fur-oil staining;
- feeding remains (i.e. moth wings);
- squeaking noises;
- bat-fly (Nycterioid) pupal cases; and
- odour.

4.2.7 It should be noted that only specimens or droppings can be relied upon in isolation to confirm the presence of a bat roost.

4.2.8 Frequently used roosting locations within the roof include (but are not limited to):

- the apex of the gable end or dividing walls;
- the top of chimney breasts;
- ridge and hip beams;

- mortise and tenon joints;
- behind purlins; and
- between tiles and roof lining.

Survey Limitations and Validity

- 4.2.9** There were no significant survey limitations because PRAs can be carried out at any time of year under any weather conditions and the building was fully accessible. There was heavy rain during the entire survey and therefore photographs were not all in focus and although droppings were identified on windows, they are not clear in the photographic evidence.
- 4.2.10** It should be noted that it is not always possible to inspect all potential roost sites during a survey, particularly for bat species which typically roost in hidden crevices. Therefore, an absence of bat evidence found during a survey does not necessarily equate to evidence of bat absence in a building.
- 4.2.11** This report contains information regarding a mobile species so it will likely be valid for 12 months only (CIEEM 2019).

5 SURVEY RESULTS

5.1 Desk Study

- 5.1.1 The surrounding grassland, waterbodies and ancient and priority deciduous woodland provide high-quality commuting and foraging opportunities for bats roosting locally, with linkage to the River Thames 700m south west of the site.
- 5.1.2 Bat mitigation licences that have been granted within the last 10 years inside a 2km radius of the application site are detailed in **Table 1** below.

Table 1. Bat mitigation licences granted within a 2km radius (Source: MAGIC).

Case Reference of Granted Licence	Species on the Licence	Licensable Period	Licensable Works	Distance (m)
2017-27806-EPS-MIT	Soprano pipistrelle Brown long-eared	2017 – 2017	Damage and destruction to a resting place	980 W
2020-48008-EPS-MIT	Common pipistrelle	2020 – 2020	Damage to a resting place	1075 N
2015-10500-EPS-MIT	Common pipistrelle	2015 – 2020	Destruction of resting place	1270 SW
2015-7300-EPS-MIT	Common pipistrelle Soprano pipistrelle Brown long-eared	2015 - 2020	Destruction of resting place	1500 SE
2015-7768-EPS-MIT	Soprano pipistrelle	2015 - 2020	Destruction of resting place	1850 SW

- 5.1.3 A Preliminary Ecological Appraisal (ref: R2734a) including PRA, was undertaken by John Wenman Ecological Consultancy in April 2021, and a subsequent Emergence and Re-Entry Survey Report (ref: R2858a) was issued for the property for a planning application (ref: 210954) to convert the workshop into residential accommodation. The surveys confirmed day summer roost presence for small numbers of soprano pipistrelle bats, therefore works were carried out under a Bat Mitigation (low impact) Class Licence.

5.2 Building Inspection

Overview

- 5.2.1 The findings from the external and internal inspections carried out for the property are described with photographs and are annotated in a plan, as follows:

External Survey

- 5.2.2** The property was an 'L'-shaped detached house of brick and flint, with 6 dormers and a rear bay window. (**Photographs 1 - 4**).

Photograph 1. Front of property viewed from northeast.

Photograph 2. Rear of property viewed from west.

Photograph 3. Northwestern elevation.

Photograph 4. Southeastern elevation.

- 5.2.3** The roof was covered with flat tiles that were lifted, slipped and broken in places. The ridge and hip tiles were in place with mortar intact and verge mortar was mostly intact. There were lifted tiles around the southernmost chimney and gaps between the dormers and tiles. The dormers at the front of the property were timber clad which was mostly tight, the dormers at the rear were clad with hanging tiles which were mostly flat (**Photographs 5 - 8; Target notes 1 - 3**).

Photograph 5. Lifted and slipped tiles throughout, ridge and hip tiles in place, mortar mostly intact

Photograph 6. Verge mortar intact.

Photograph 7. Lifted tiles around dormers.

Photograph 8. Lifted tiles around southernmost chimney.

- 5.2.4** The soffits were timber and contained plastic mesh, with occasional gaps
(Photographs 9 & 10; Target note 4).

Photograph 9. Timber soffits with plastic mesh and occasional gaps.

Photograph 10. Timber soffits with plastic mesh and occasional gaps.

- 5.2.5** Potential bat droppings were visible on the glass windows of the front dormers
(Photographs 11 & 12; not in focus due to weather conditions at time of survey). Two external bat boxes fitted on the northwestern and south eastern elevations were inspected with a torch and found to be unoccupied with no signs of previous use.

Photograph 10. Front gable end clad in hanging tiles (front elevation); dropping stuck to glass although not visible in the photograph.

Photograph 11. Gaps behind hanging tiles on front gable end (front elevation); dropping stuck to glass although not visible in the photograph.

Internal Survey

- 5.2.6** There were two roof voids accessible via first-floor loft hatches. The first void was approximately 1.75m in height. The void was of traditional cut and pitch roof construction lined with an intact breathable membrane. The ridge beam was lightly cobwebbed (**Photographs 12 – 13; Target note 5**).

Photograph 12. Void 1 of cut and pitch construction approx. 1.75m in height.

Photograph 13. Roof lined with intact breathable membrane, ridge beam lightly cobwebbed.

- 5.2.7** The floor was boarded with fibreglass roll and/or foamboard insulation underneath. The eaves were open. (**Photographs 14 - 15: Target note 6**).

Photograph 14. Boarded floor with fibreglass roll and/or foamboard insulation underneath.

Photograph 15. Eaves open.

5.2.8 At least 100 medium-sized bat droppings, resembling those typically deposited by long-eared species (*Plecotus sp.*), were scattered throughout the roof void with a couple of notable accumulations under the ridge and on the ridge beam indicating a roosting site, and around the chimney brickwork (Photographs 16 - 17).

Photograph 16. Approx 100 medium-sized bat droppings scattered throughout void.

Photograph 17. Accumulation of bat droppings on and under ridge beam.

5.2.9 The second void was approximately 1.75m in height, lined with timber sarking, with a cobwebbed ridge. A newer extension section had breathable membrane liner with a small tear. There was fibreglass roll or foamboard insulation on the floor, with boards in places (Photographs 18 – 21; Target notes 7 - 9).

Photograph 18. Void 2 lined with sarking, fibreglass insulation on floor, boards in places.

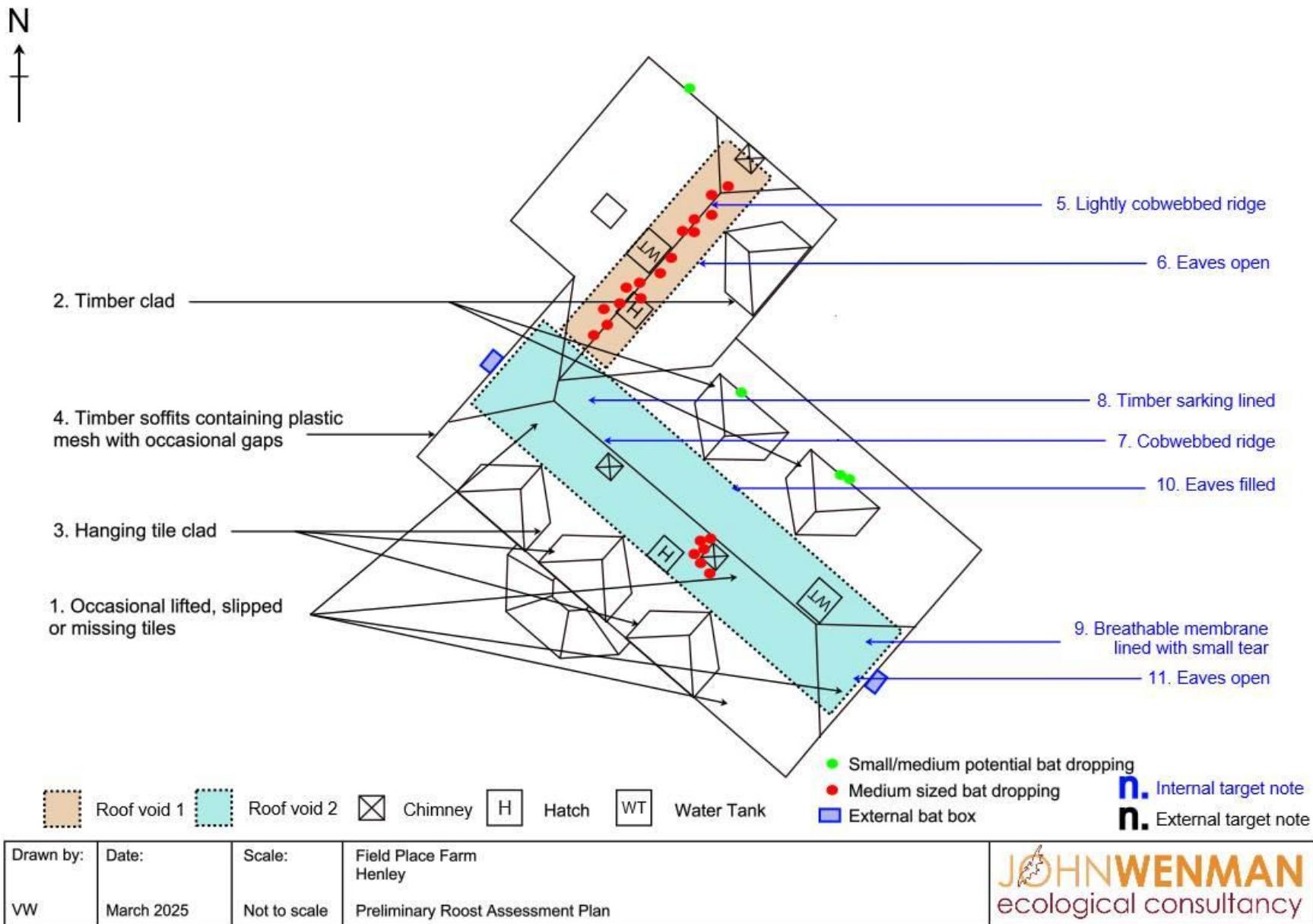
Photograph 19. Ridge beam cobwebbed.

Photograph 20. Newer void area lined with breathable membrane with a small tear.

Photograph 21. Floor covered with foamboard insulation.

5.2.10 The eaves were filled with fibreglass insulation in the original section and open in the newer section. There was a gap around the southernmost chimney which was leaking water, a collection of approximately 50 medium-sized bat droppings were observed on the second chimney, on the brickwork, caught in the cobwebs and at the base. The droppings resembled those typically deposited by long-eared species (*Plecotus* sp.). Mouse droppings were scattered throughout (Photographs 22 – ; Target notes 10 - 11).

Photograph 22. Leaking southernmost chimney.


Photograph 23. Non-leaking chimney with bat droppings.

Photograph 24. Bat droppings on chimney brickwork.

Photograph 25. Collection of bat droppings on floor.

6 DISCUSSION

6.1 Assessment of Roost Suitability

- 6.1.1 The surrounding grassland, waterbodies and ancient and priority deciduous woodland provide high-quality commuting and foraging opportunities for bats roosting locally, with linkage to the River Thames 700m south west of the site.
- 6.1.2 Furthermore, the search of bat mitigation licences identified at least three species roosting locally: brown long-eared bat (*Plecotus auritus*), common pipistrelle (*Pipistrellus pipistrellus*) and soprano pipistrelle (*Pipistrellus pygmaeus*) and a confirmed soprano pipistrelle day roost in a building to the north west on the same residential plot.
- 6.1.3 During the internal inspection of the roof void, at least 150 medium-sized bat droppings – resembling those typically deposited by the locally recorded brown long-eared bat (*P. auritus*) – were scattered throughout the roof voids with a couple of notable accumulations. Due to the number of droppings and the scale of void, the house is considered likely to support regular use by individual or small numbers of brown long-eared bats (*P. auritus*). The potential access points inside the roof void include gaps in the roof liners, gaps around the chimneys and gaps at the eaves.
- 6.1.4 Externally, the potential access points for these bats comprise gaps under lifted or missing tiles throughout, especially around the dormers and chimneys. These external features, in addition to gaps behind the hanging tiles and cladding on the dormers, provide potential roosting opportunities for small crevice-dwellings bats such as the locally recorded common pipistrelle (*P. pipistrellus*) and soprano pipistrelle (*P. pygmaeus*). Due to the scale of the potential roost sites in conjunction with the surrounding habitat, the house is considered to have the potential to support large numbers of small crevice-dwelling bats, although evidence to date does not indicate a maternity roost.
- 6.1.5 Taking into account the reasoning set out in the assessment above, the house has been assigned confirmed roost – high suitability (see **Appendix 1** for potential suitability categories).

6.2 Assessment of Roost Status

- 6.2.1 Based on the number and distribution of droppings found in the roof void, the confirmed roost is considered likely to be regularly used by individual or small numbers of brown

long-eared bat (*P. auritus*) – i.e. a summer day roost. The findings are not indicative of use by a maternity roost.

- 6.2.2** Brown long-eared bat (*P. auritus*) is a widespread species in Great Britain, commonly associated with broadleaved and mixed woodland habitats. This species will roost in trees, bat boxes and buildings but maternity roosts are predominantly located in barns, churches and houses with large internal flight spaces (Mathews *et al.* 2018). Roosts supporting this species hold site to county level conservation importance subject to the roost type (see **Appendix 2** for definitions of roost types), i.e. non-breeding roosts supporting individual bat or small groups through to maternity roosts supporting large numbers of female bats (Reason & Wray 2023). The grey long-eared bat (*Plecotus austriacus*) is very similar in morphology and flight pattern to the brown long-eared bat (*P. auritus*) but very few colonies are known in Great Britain; this species is found almost exclusively in lowland regions of southern England, near to the coast (Mathews *et al.* 2018).
- 6.2.3** The house is considered to have the potential to support large numbers of small crevice-dwelling bats, such as the locally recorded common pipistrelle (*P. pipistrellus*) and soprano pipistrelle (*P. pygmaeus*); evidence to date does not indicate the presence of a maternity roost but it cannot be ruled out at this stage.
- 6.2.4** Common pipistrelle (*P. pipistrellus*) and soprano pipistrelle (*P. pygmaeus*) are the most abundant and widespread bats in Great Britain. These species occur in almost any habitat type and are well adapted to the built environments; they are the species most regularly reported roosting in houses and churches (Mathews *et al.* 2018). Brandt's / whiskered bat (*Myotis brandtii* / *mystacinus*) are small *Myotis* species that are widespread and will roost in the same buildings as the much more abundant pipistrelle species (Mathews *et al.* 2018). Roosts supporting these species hold site to county level conservation importance subject to the roost type (see **Appendix 2** for definitions of roost types), i.e. non-breeding roosts supporting individual bat or small groups through to maternity roosts supporting large numbers of female bats (Reason & Wray 2023).

7 IMPACT ASSESSMENT

7.1 Potential Impacts of Development Proposals

Overview

- 7.1.1 The development proposals involve the construction of additional dormers on the front and rear elevations and changes to existing dormers. (refer to proposed plans in **Appendix 4**). The impacts of the proposals, during construction phase (i.e. roof stripping) and post development, have been assessed in accordance with the mitigation hierarchy as follows:

Construction Phase

- 7.1.2 The proposed works will result in the disturbance and damage of the confirmed roost and in the absence of appropriate mitigation measures, cause disturbance, injury and/or death of any bats in occupancy at the time. Furthermore, the potential crevice-dwelling roost sites and associated access points may be lost.

Post Development

- 7.1.3 The proposed works may result in the permanent damage of the confirmed roost access points and loss of potential roost sites. The loss (i.e. permanent destruction) of a bat roost has potential to significantly affect the local distribution or abundance of a bat species, subject to the species' conservation status and type of roost (see **Appendix 2** for definitions of roost types).

7.2 Recommended Actions

- 7.2.1 The development proposals do not have scope to be altered to avoid potential adverse effects on bats. Therefore, further survey is recommended to characterise the confirmed roosts and to determine the presence or likely absence of other bat roosts at the property (see **Appendix 3** for further survey rationale). The recommended survey approach and indicative mitigation proposals are detailed in **Section 8** below.

8 RECOMMENDATIONS

8.1 Further Survey

- 8.1.1 Three dusk emergence survey visits should be undertaken in the period of April to September (dependent on weather conditions), with at least two of the visits between May and August (i.e. optimal survey season); the survey visits should be spaced at least three weeks apart. These survey visits form part of the roost characterisation necessary to inform an impact assessment and mitigation strategy; the roost characterisation may involve other methods, such as DNA analysis of bat droppings.
- 8.1.2 Once roost characterisation is complete, an impact assessment with reference to the mitigation hierarchy will be made. In cases where the adverse effects caused by the development proposals are unavoidable, an application for a European Protected Species (EPS) mitigation licence or the registration of the site under the Bat Mitigation Class Licence (BMCL) would be required to permit the work to proceed lawfully. An EPS mitigation licence or BMCL can be issued by Natural England if the three licensing tests (detailed in **Paragraph 3.3.1**) have been satisfied by the proposals.
- 8.1.3 To satisfy one of the licensing tests, it would be necessary to demonstrate that the 'favourable conservation status' of the bat species using the property is maintained during the construction phase and post development. A mitigation strategy setting out avoidance, mitigation, compensation and enhancement measures would be required to achieve this. Indicative and provisional measures are summarised in **Section 8.2** below.

8.2 Indicative Mitigation Strategy

- 8.2.1 If further surveys and the impact assessment demonstrate that an EPS mitigation licence or BMCL (if applicable) is required to permit lawful development, the commencement of construction activities impacting the bat roosts (i.e. demolition) would be timed to avoid the periods when bats are most susceptible to disturbance, i.e. winter hibernation period if there is a reasonable likelihood of hibernating bats (mid-November to mid-March) and peak breeding season (May to August) if a maternity colony is present.
- 8.2.2 Alternative roost sites would be made available to bats before and throughout the construction phase by likely installing at least one woodcrete bat box (suitable for the type of roost/species present) on a suitable mature tree or a pole mount. The bat box should be positioned at least 3 metres from the ground, away from artificial lighting and

sheltered from strong wind while being exposed to sunshine (usually south, south east or south west facing).

- 8.2.3** Before the commencement of construction activities impacting the bat roost (i.e. the licensable works), a licensed ecologist or 'Registered Consultant' under the BMCL would provide a toolbox talk to all contractors working on site detailing how bats use buildings, legal protection, working methods (i.e. soft demolition/roof strip by hand), actual and potential roost sites, actions to be taken if a bat is found and personal safety procedures.
- 8.2.4** A soft demolition/roof strip approach to the works affecting the bat roosts would be adopted, i.e. careful removal of roof tiles by gloved hands and handheld tools under the direct supervision of a licensed ecologist or 'Registered Consultant'. If a bat is found during the course of the works, the licensed ecologist or 'Registered Consultant' would capture the bat and transfer it directly to a woodcrete bat box installed in advance.
- 8.2.5** Replacement bat access points and roost sites may need to be created and/or reinstated into the replacement dwelling as part of an EPS mitigation licence or BMCL site registration. This compensation should aim for like-for-like roost sites with access points corresponding as closely as possible to the previous locations.
- 8.2.6** Where access is provided for bats, a bituminous roofing felt that does not contain polypropylene/polyethylene filaments (e.g. bitumen felt type 1F) or a non-bitumen coated 'breathable' membrane that has passed the snagging propensity test (e.g. TLX 'Bat Safe') should be used; other non-bitumen coated membranes are harmful to bats and must be avoided.

9 REFERENCES

- CIEEM (2019). *Advice Note on the Lifespan of Ecological Reports and Surveys*. CIEEM, Winchester.
- Collins, J. (ed.) (2023). *Bat Surveys for Professional Ecologists: Good Practice Guidelines (4th edition)*. The Bat Conservation Trust, London.
- Mathews F., Kubasiewicz L.M., Gurnell J., Harrower C.A., McDonald R.A., Shore R.F. (2018). *A Review of the Population and Conservation Status of British Mammals*. A report by the Mammal Society under contract to Natural England, Natural Resources Wales and Scottish Natural Heritage. Natural England, Peterborough.
- Mitchell-Jones, A. J. & McLeish, A. P. (2004). *Bat Workers' Manual (3rd edition)*. JNCC, Peterborough.
- Reason, P.F. and Wray, S. (2025). *UK Bat Mitigation Guidelines: a guide to impact assessment, mitigation and compensation for developments affecting bats. Version 1.2*. CIEEM, Ampfield.

APPENDIX 1 – POTENTIAL SUITABILITY CATEGORIES FOR ROOSTING BATS

The categories detailed in **Table 2** below are derived from the ‘*Bat Surveys for Professional Ecologists: Good Practice Guidelines (4th edition)*’ (Collins 2023) and provide guidance for assessing the potential suitability of buildings (and other structures) for roosting bats. These categories are applied using professional judgement and irrespective of whether the presence of a bat roost has been confirmed during a survey, as additional bat roosts could be present which have not yet been discovered.

Table 2. Categories for potential suitability of buildings (and other structures) for roosting bats.

Potential Suitability	Category Justification
None	A building (or structure) that has no features likely to be used by any roosting bats at any time of the year (i.e. a complete absence of cracks, crevices or voids that could provide suitable shelter).
Negligible	A building (or structure) that has no obvious features likely to be used by roosting bats, but in this case a small element of uncertainty remains as bats will occasionally use small and apparently unsuitable features. This category may also be used where a bat could potentially roost due to one attribute, but it is considered unlikely due to another attribute (e.g. a feature that is subject to constant illumination from artificial lighting).
Low	A building (or structure) that has one or more potential roost sites suitable for opportunistic use by individual bats at any time of the year. However, these potential roost sites for bats do not provide sufficient space, shelter, protection, conditions and/or surrounding suitable habitat to be used regularly or by large numbers (i.e. unlikely to be suitable for a maternity colony and not a classic hibernation site).
Moderate	A building (or structure) that has one or more potential roost sites suitable for regular use by individual bats, or small non-breeding groups, due to sufficient space, shelter, protection, conditions and surrounding habitat. However, these potential roost sites for bats are unlikely to support a roost of high conservation status with regards to the type of roost only (i.e. maternity colonies and classic hibernation sites).
High	A building (or structure) that has one or more potential roost sites suitable for use by large numbers of bats more regularly and for longer periods of time due to sufficient space, shelter, protection, conditions and surrounding habitat. These potential roost sites for bats are capable of supporting high conservation status roosts (i.e. maternity colonies and classic hibernation sites).

APPENDIX 2 – DEFINITION OF BAT ROOST TYPES

The potential suitability of a building in conjunction with any evidence of bat presence is used to provide an initial assessment of likely roost type and importance. The types of roost considered are based on the following Natural England definitions:

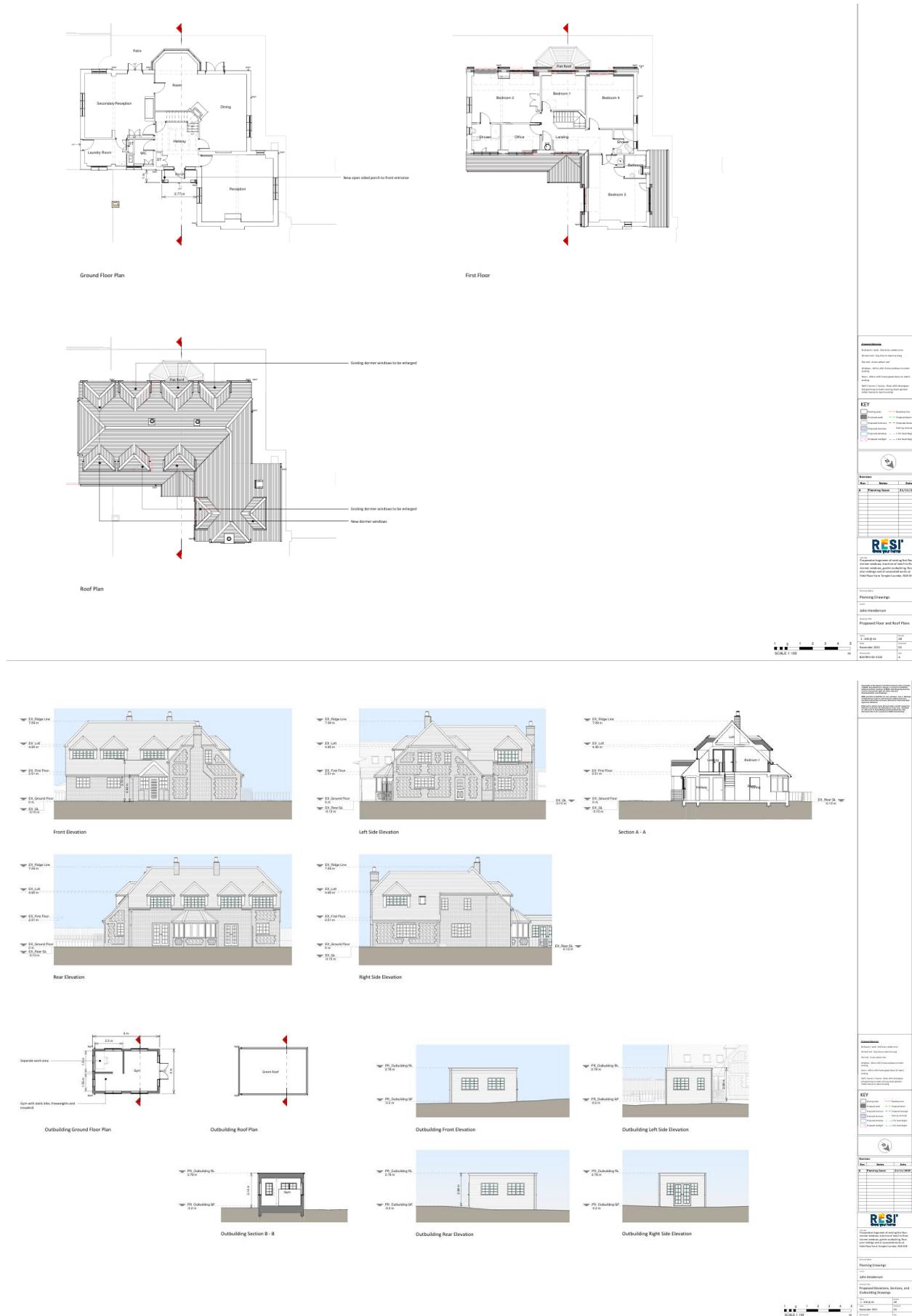
- Day roost – a summer resting place used by individual bats, or small non-breeding groups, during the day;
- Night roost – a resting place used by individual bats on occasion, or by a whole colony regularly, during the night;
- Feeding perch – a resting place used by individual bats, or a few individuals, primarily for short periods of feeding during the night;
- Transitional roost – a place used by a few individual bats, or occasionally small groups, for a short period of time upon waking from hibernation or in the period prior to hibernation;
- Maternity roost – a place used by small to large groups of female bats to give birth and raise their young to independence;
- Hibernation roost – a place used by individual bats, or in groups, during winter where there is a constant cool temperature and high humidity; and
- Satellite roost – a place used by a few individuals to small groups of breeding female bats found in close proximity to the main nursery colony throughout the breeding season.

The importance of a bat roost is underpinned by the conservation status of the suspected species (i.e. the distribution/rarity of a species in a specific geographic location) and the type of roost (i.e. not all roosts have the same level of importance in supporting the local bat population). Further roost characterisation surveys may be required to fully determine the importance of a confirmed roost to allow for a robust impact assessment.

APPENDIX 3 – FURTHER SURVEY RATIONALE

In cases where no evidence of use by bats is found during a building inspection but the possibility of their presence cannot be ruled out, further presence/likely absence survey is likely to be required if the development proposals will impact potential roost sites.

Emergence surveys are carried out to establish the presence or likely absence of roosting bats in buildings (and other structures) and these are designed in accordance with the '*Bat Surveys for Professional Ecologists: Good Practice Guidelines (4th edition)*' (Collins 2023) detailed in **Table 3** below.


Table 3. Recommended further survey for establishing presence/likely absence of roosting bats in buildings (and other structures).

Potential Suitability	Further Survey
None	No further surveys are required.
Negligible	No further surveys are required.
Low	A minimum of one dusk emergence survey visit should be undertaken in the period of May to August. However, if all areas (including cracks, crevices and voids) can be thoroughly inspected and no evidence of use by bats is found, then emergence surveys may not be required. In cases where a complete inspection cannot be carried out, professional judgement and proportionality should be applied when assessing the impacts of the development proposals.
Moderate	A minimum of two dusk emergence survey visits should be undertaken in the period of May to September, with at least one of the surveys between May and August; the survey visits should be spaced at least three weeks apart.
High	A minimum of three separate dusk emergence survey visits should be undertaken in the period of May to September (inclusive), with at least two of the surveys between May and August; the survey visits should be spaced at least three weeks apart.

In cases where the PRA and/or further survey establishes the presence of roosting bats in a building (or structure), this will likely trigger the need for roost characterisation to collect sufficient information to inform the impact assessment and mitigation strategy.

The roost characterisation comprises information collected during the PRA, emergence surveys and by other methods, such as DNA analysis of bat droppings, and ultimately aims to determine the bat species roosting; the number of bats the roosts support; the roost access points; the locations of the roosts and the types of roost present. This information is crucial when applying for planning permission and/or a European Protected Species mitigation licence.

APPENDIX 4 – PROPOSED PLANS

