

Mark A Chadd Ltd
architectural Services
7 Tanners Row
Wokingham
RG41 4EL
Tel:07702 090009
mchaddarchitecturalservices@gmail.com

BIODIVERSITY REPORT

Re: Alterations to Existing Rear Extension Roof and Fenestration and New Two Storey and Single Storey Rear Extensions.

Longridge
Wick Hill Lane
Finchampstead
RG40 3QG

Bat Roost Habitat:

The Preliminary Bat Roost Survey reports that although there were no actual bats or bat roosts evident within the structure of the property, it was deemed that there was the possibility that bats may be able to roost in certain locations. This logic could be applied to almost any property. Given that the property is approximately 30 years old, it is not unreasonable to think that if the property was suitably attractive to bats they would have roosted by now.

Notwithstanding, in view of the above and the Preliminary Bat Roost Survey report, it is requested that the application be considered on the merits of the design and the suitability of the proposed extensions. If the application is deemed acceptable a planning condition can be applied to meet the requirements of the The Preliminary Bat Roost Survey. This will enable the applicant to complete the technical design and plan the building works in confidence.

Great Crested Newt:Not applicable.

Arboricultural:No existing or protected trees adjacent to proposed works.

**Longridge
Wick Hill Lane
Finchampstead
Berkshire
RG40 3QG**

Preliminary Roost Assessment

Report ref.: R3089_PRA_a

Report Quality Control Information	
<i>Author</i>	<i>Verity West (qualifying member of CIEEM)</i>
<i>Reviewer</i>	<i>Megahn Porter-Smith</i>
<i>Authorised</i>	<i>John Wenman MCIEEM</i>

November 2025

1 Diesel House, Honey Hill, Wokingham, Berkshire RG40 3BL
Telephone: 0118 3271810 Mobile: 07979 403099 E-mail: info@wenman-ecology.co.uk
www.wenman-ecology.co.uk

John Wenman Ecological Consultancy LLP is a limited liability partnership registered in England and Wales with registered number OC339057.
Registered office: 1 Diesel House, Honey Hill, Wokingham RG40 3BL where you may look at a list of members' names.

CONTENTS PAGE

1	EXECUTIVE SUMMARY	3
2	INTRODUCTION	4
2.1	Project Background.....	4
2.2	Site Location and Context.....	4
2.3	Report Objectives	4
3	LEGISLATIVE AND POLICY BACKGROUND	5
3.1	Relevant Legislation.....	5
3.2	Planning Policy	5
3.3	Mitigation Licensing	6
4	SURVEY METHODOLOGY	7
4.1	Desk Study	7
4.2	Building Inspection.....	7
5	SURVEY RESULTS.....	10
5.1	Desk Study	10
5.2	Building Inspection.....	10
6	DISCUSSION	17
6.1	Assessment of Potential Roost Suitability	17
7	IMPACT ASSESSMENT	19
7.1	Potential Impacts of Development Proposals	19
7.2	Conclusions	19
8	RECOMMENDATIONS	20
8.1	Further Surveys	20
8.2	Indicative Mitigation Strategy	20
9	REFERENCES	22
APPENDIX 1 – POTENTIAL SUITABILITY CATEGORIES FOR ROOSTING BATS		23
APPENDIX 2 – DEFINITION OF BAT ROOST TYPES		24
APPENDIX 3 – FURTHER SURVEY RATIONALE		25
APPENDIX 4 – EXISTING FLOOR PLANS		27
APPENDIX 5 – PROPOSED FLOOR PLANS		28

1 EXECUTIVE SUMMARY

1.1.1 John Wenman Ecological Consultancy LLP was instructed by Lisa Smith to undertake a Preliminary Roost Assessment (PRA) for bats at Longridge – a detached residential house on Wick Hill Lane in Finchampstead, Berkshire. The survey was commissioned to accompany a householder planning application to be submitted to Wokingham Borough Council seeking consent for a single and a double-storey extension at the rear of the property.

1.1.2 Approximately eight small-sized bat droppings, of a shape and size most typical of those deposited by pipistrelle species (*Pipistrellus* spp.), were observed below the hanging tiles on the front elevation ground-floor bay window. The property had additional potential roost features suitable for use by crevice-dwelling bats behind hanging tiles on the first floor dormers and under lifted/missing/broken roof tiles, at the front and rear of the property. These features could provide sufficient space, shelter, protection and conditions for regular use by crevice-dwelling bats, such as the locally recorded pipistrelle species (*Pipistrellus* spp.). Overall, considering the features present, observation of bat dropping evidence and the priority habitat woodland in the immediate setting, the house is considered to be of moderate potential suitability for roosting bats, with a confirmed roost (see **Appendix 1** for categories).

1.1.3 The development proposals will directly impact on potential roost features identified at the rear of the property. Furthermore, works could obstruct access to and result in the damage/destruction of bats roosts and lead to direct/indirect disturbance, injury and/or death of bats, which may have the potential to significantly affect the local distribution or abundance of a bat species.

1.1.4 If the proposed works cannot be altered to avoid the potential adverse effects on bats in the dwelling, further surveys are recommended to establish the presence or absence of bat roosts, to be able to assess fully whether the development proposals will have an adverse effect on bats and design a mitigation strategy if necessary. A minimum of two dusk emergence survey visits should be undertaken in the period of May to September, with at least one survey between May and August.

1.1.5 This report contains information regarding a mobile species so it will likely be valid for less than 12 months (CIEEM 2019b).

2 INTRODUCTION

2.1 Project Background

2.1.1 John Wenman Ecological Consultancy LLP was instructed by Lisa Smith to undertake a Preliminary Roost Assessment (PRA) for bats at Longridge – a detached house on Wick Hill Lane in Finchampstead, Berkshire.

2.1.2 The survey was commissioned to accompany a householder planning application to be submitted to Wokingham Borough Council seeking consent for a single and a double storey extension at the rear of the property.

2.2 Site Location and Context

2.2.1 The property is a detached residential dwelling located along the Wick Hill Lane cul-de-sac, to the south side of Nine Mile Ride in Finchampstead (central OS grid reference: SU80334 64740).

2.2.2 The property is neighboured by similar properties with associated private gardens. The site is approximately 5 metres north of a parcel of priority habitat deciduous woodland, and is less than 50 metres north of a parcel of ancient woodland, with King's Mere Lake approximately 825 metres to the east of the site. The immediate surroundings include further similar housing with established tree lines, hedgerows and woodland. The property falls within the Impact Risk Zone for one Site of Special Scientific Interest (SSSI) Longmoor Bog SSSI 1,980 metres to the west.

2.3 Report Objectives

2.3.1 The aim of the PRA is to ascertain if there is evidence of the presence of bats and/or potential for roosting bats to be present, and therefore whether further survey and/or mitigation would be required for the proposed development activities.

3 LEGISLATIVE AND POLICY BACKGROUND

3.1 Relevant Legislation

3.1.1 In England and Wales, all bat species found in the wild are fully protected under the Wildlife & Countryside Act 1981 (as amended) (WCA) and Conservation of Habitats and Species Regulations 2017 (as amended); the regulations are commonly referred to as the Habitat Regulations and hereafter referred to as such. The Habitat Regulations refer to European Protected Species (EPS) and all species of bats in the United Kingdom (UK) are EPS. Although the UK left the European Union on the 31st January 2020 and is therefore no longer tied to European legislation, the Habitat Regulations have been retained in their current format.

3.1.2 The legal framework underpinned by the WCA and Habitat Regulations makes these specific actions an offence as follows:

- Deliberately kill, injure, capture or take a wild bat;
- Deliberately, intentionally or recklessly disturb bats; in particular any disturbance which is likely to impair their ability to survive, to breed or reproduce, to rear or nurture their young, to hibernate or migrate, or to significantly affect local distribution or abundance;
- Damage or destroy a place used by a bat for breeding or resting; and
- Intentionally or recklessly obstruct access to any place used by a bat for shelter or protection.

3.2 Planning Policy

3.2.1 The biodiversity duty imposed through the Environment Act 2021 states that Local Planning Authorities (LPAs) must consider what action they can take to conserve and enhance biodiversity in England. Government planning policy, such as the ODPM Circular 06/2005, requires LPAs to account for the conservation of protected species when considering and determining planning applications.

3.2.2 The ODPM Circular 06/2005 states that 'the presence of a protected species is a material consideration when a planning authority is considering a development proposal that, if carried out, would be likely to result in harm to the species or its habitat.' This policy means that in instances where there is a reasonable likelihood of bats being present and affected by a development, surveys must be undertaken to inform a mitigation strategy to be agreed prior to granting planning permission.

3.3 Mitigation Licensing

3.3.1 The government's statutory nature conservation body, Natural England, is responsible for issuing European Protected Species (EPS) mitigation licences that would permit activities that would otherwise lead to an infringement of the Habitat Regulations. An EPS mitigation licence can be issued if the following three tests derived from Regulation 55 have been satisfied:

- (2)(i) – the derogation is for the purposes of '*preserving public health or public safety or other imperative reasons of overriding public interest, including those of a social or economic nature and beneficial consequences of primary importance for the environment.*'
- (9)(a) – there is '*no satisfactory alternative*' to the derogation; and
- (9)(b) – '*the action authorised will not be detrimental to the maintenance of the population of the species concerned at a favourable conservation status in their natural range.*'

3.3.2 LPAs have a statutory duty under Regulation 7(3)(e) of the Habitat Regulations to consider and determine whether these three tests are likely to be satisfied by planning proposals affecting EPS before granting planning permission. If an EPS mitigation licence is necessary, a licence can be sought once all the necessary planning consents have been granted. Natural England aims to issue a decision on licence applications within 30 working days of submission.

3.3.3 The Bat Mitigation Class Licence (BMCL) scheme allows ecologists to apply to become Registered Consultants to use this licence for low conservation status roosts, i.e. roosts comprising small numbers of seven commonly occurring species. A site registration form must be completed as a condition of the licence and submitted to Natural England at least three weeks before the licensable activities are due to start; Natural England aims to register sites within two weeks of submission.

3.3.4 Baseline survey information supporting EPS mitigation licence applications or BMCL site registrations must be up-to-date and have been completed within the current or most recent optimal season. A suitably experienced ecologist will be required to undertake a site walkover/check within three months prior to application/registration submission to confirm that conditions have not changed since the most recent survey.

4 SURVEY METHODOLOGY

4.1 Desk Study

4.1.1 A desk-based study for bats was undertaken to collate and review existing information about the site and the surrounding land. The study utilised the following open access resources:

- OS maps and Google Earth – maps and satellite imagery were used to identify potential flight-paths and foraging habitats for bats;
- MAGIC – examined to locate granted European Protected Species licences; and
- Pre-existing bat survey reports – any available reports were obtained from the client or relevant planning portal.

4.2 Building Inspection

Survey Details

4.2.1 A detailed inspection of the exterior and interior of the property was undertaken on the 24th November 2025 by Meghan Porter-Smith - registered under Natural England Bat Survey Class Licence CL17 (Registration no. 2023-11300-CL17-BAT) and ecologist Verity West - a Qualifying member of CIEEM - in accordance with good practice guidance (Collins 2023). The equipment used during the inspection comprised binoculars, a high-power (1 million candlepower) LED torch, a headtorch, ladder and PPE (facemask, gloves etc.). The inspection involved a systematic search of the exterior and interior of the structure during daylight hours to compile information on potential and actual bat access points; potential and actual bat roost sites; and any evidence of bat presence.

External Survey

4.2.2 Frequently used bat access points and/or roost sites include (but are not limited to) spaces:

- behind hanging tiles, weatherboarding, soffit boxes and barge boards;
- under lead flashing (particularly around chimneys) and roof tiles/slates; and
- in existing bat boxes.

4.2.3 It is important to note that the two most abundant and widespread bat species, common pipistrelle (*Pipistrellus pipistrellus*) and soprano pipistrelle (*Pipistrellus pygmaeus*),

typically only require gaps measuring 15mm by 20mm to gain access to a roost inside a building.

4.2.4 The external survey involved a systematic search for evidence of bats including:

- live or dead specimens;
- droppings;
- urine marks;
- fur-oil staining; and
- squeaking noises.

4.2.5 It should be noted that bats can be present in a building while leaving no visible signs externally and wet weather has the potential to wash any evidence away. The search for evidence was focused on (but was not limited to) the ground, windowsills, windowpanes and walls (including cladding and hanging tiles); particularly in places near to potential bat access points and/or roost sites.

Internal Survey

4.2.6 The internal survey comprised a systematic search for evidence of bats on the upper floors of the building (i.e. checking the exterior from windows) and inside the roof and eave spaces. Evidence of bats found during an internal inspection can include:

- live or dead specimens;
- droppings;
- urine marks;
- fur-oil staining;
- feeding remains (i.e. moth wings);
- squeaking noises;
- bat-fly (Nycteribiid) pupal cases; and
- odour.

4.2.7 It should be noted that only specimens or droppings can be relied upon in isolation to confirm the presence of a bat roost.

4.2.8 Frequently used roosting locations within the roof include (but are not limited to):

- the apex of the gable end or dividing walls;
- the top of chimney breasts;
- ridge and hip beams;
- mortise and tenon joints;
- behind purlins; and
- between tiles and roof lining.

Survey Limitations and Validity

4.2.9 There were no significant survey limitations because PRAs can be carried out at any time of year under any weather conditions and the building was fully accessible.

4.2.10 It should be noted that it is not always possible to inspect all potential roost sites during a survey, particularly for bat species which typically roost in hidden crevices. Therefore, an absence of bat evidence found during a survey does not necessarily equate to evidence of bat absence in a building.

4.2.11 This report contains information regarding a mobile species so it will likely be valid for less than 12 months (CIEEM 2019b).

5 SURVEY RESULTS

5.1 Desk Study

5.1.1 The linked gardens in the immediate leafy suburban setting, resembles continuous habitat that could be used as flight paths connecting to high-quality foraging habitats in the wider landscape, including priority habitat deciduous and ancient woodland and waterbodies, for any bats roosting locally.

5.1.2 Bat mitigation licences that have been granted inside a 2 kilometre radius of the property, within the last 10 years, are detailed in **Table 1** below.

Table 1. Bat mitigation licences granted within a 2km radius of the property (Source: MAGIC).

Case Reference of Granted Licence	Species on the Licence	Licensable Period	Licensable Works	Approx Distance (m)
2015-7982-EPS-MIT	Brown long-eared	14/04/2015 – 14/04/2020	Destruction of a resting place	635 NE
2015-7094-EPS-MIT	Common pipistrelle Brown long-eared	06/03/2015 – 31/03/2015	Destruction of a resting place	745 W
2019-39174-EPS-MIT	Common pipistrelle Soprano pipistrelle Brown long-eared	13/03/2019 – 13/03/2029	Destruction of a breeding roost & resting place	840 SW
2019-44291-EPS-MIT	Common pipistrelle	17/03/2020 – 31/12/2020	Damage to a resting place	840 S
2020-45340-EPS-MIT	Brown long-eared	25/03/2020 – 30/09/2025	Destruction of a resting place	905 E
2015-9568-EPS-MIT	Common pipistrelle	06/05/2015 – 01/04/2020	Destruction of a resting place	1135 NW
2017-31789-EPS-MIT	Soprano pipistrelle	19/10/2017 – 31/10/2018	Destruction of a resting place	1280 E
2018-33861-EPS-MIT	Brown long-eared	14/03/2018 – 30/11/2018	Destruction of a resting place	1280 E
2015-8440-EPS-MIT	Brown long-eared	28/04/2015 – 30/04/2020	Damage to a resting place	1500 E
2018-37292-EPS-MIT	Common pipistrelle Soprano pipistrelle Brown long-eared	16/10/2018 – 10/10/2028	Destruction of a breeding roost & resting place	1650 SE
2020-48238-EPS-MIT	Common pipistrelle Brown long-eared	28/07/2020 – 30/07/2026	Damage & destruction of a resting place	1775 SE
2015-18339-EPS-MIT	Common pipistrelle	01/02/2016 – 31/01/2021	Destruction of a resting place	1835 W
2019-40646-EPS-MIT	Nathusius' pipistrelle	22/05/2019 – 19/05/2024	Destruction of a resting place	1880 SW
2017-31639-EPS-MIT	Common pipistrelle	20/10/2017 – 30/10/2027	Destruction of a resting place	1950 SE

5.1.3 No previous bat roost assessment reports were available for the property on the Wokingham Borough Council planning portal or held by the client.

5.2 Building Inspection

5.2.1 The findings from the external and internal inspections are described with photographs and an annotated plan, as follows:

External Survey

5.2.2 The property is a detached, brick-built residential house, with a link-detached mansard roofed, double garage on the front elevation. The house had five hipped roofed dormer windows, a half-hipped front gable, a mansard roofed rear dormer and a single storey mansard roofed rear extension (**Photographs 1 & 2**).

Photograph 1. Front of property viewed from south.

Photograph 2. Rear of property viewed from north.

5.2.3 The roof tiles across the hipped roof were mostly flat and intact. There were occasional broken/missing/lifted tiles visible. There were small gaps under the lower valley tiles on the front elevation. The roof had solar panels on the southern-front elevation. Ridge, hip and verge mortar was intact throughout (**Photographs 3 – 6; Target notes 1 - 2**).

Photograph 3. Roof tiles mostly flat with intact ridge and hip tiles and mortar throughout (rear elevation).

Photograph 4. Missing/broken roof tile (front elevation; TN1).

Photograph 5. Small gaps under lower valley tiles (front elevation; TN2).

Photograph 6. Slight gap under lifted roof tile (rear elevation).

5.2.4 The linked garage had flat tiles and intact hip and ridge mortar throughout. The roof joined the main house with a covered walkway below, containing several skylights. There was a gap at the timber/brickwork join and a tear on the underside of the lining felt, exposing the roof tiles and providing crevice opportunities for bats (**Photographs 7 - 10; Target note 3**).

Photograph 7. Flat tiles on mansard roof of linked garage.

Photograph 8. Skylights in roof of walkway.

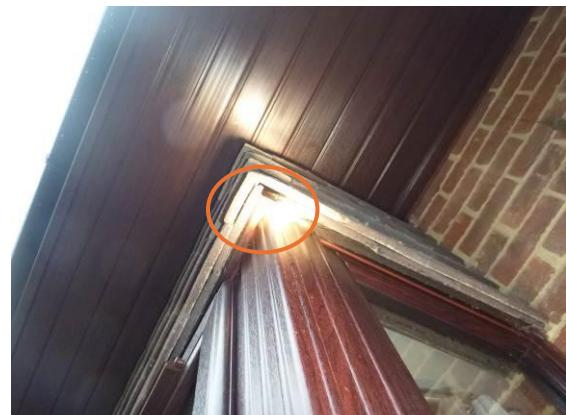
Photograph 9. Gap between timber and brickwork under walkway (TN3).

Photograph 10. Tear in underside of walkway felt (TN3).

5.2.5 There were two hipped roofed dormer windows on both the front and rear elevation of the roof, with a mansard roofed dormer in the centre on the rear elevation. They were clad with hanging tiles. There were gaps behind the corner hanging tiles in addition to gaps at the roof junctions, providing crevice roosting opportunities for bats (**Photographs 11 - 13; Target notes 4 & 5**).

Photograph 11. Gaps under lifted hanging tiles (Rear elevation; TN4).

Photograph 12. Lifted hanging tiles (front elevation; TN4).



Photograph 13. Gap where dormer joins roof (rear elevation; TN5).

5.2.6 The bay window on the south facing front elevation, and protected under the main roof overhang, featured a section of hanging tile cladding above the window. The hanging tiles were uneven at the corners of the window, creating crevice dwelling opportunities for roosting bats (**Photographs 14 & 15; Target note 5**). Approximately eight small sized bat droppings, of a size and shape consistent with typical crevice dwelling bat species, such as the locally recorded *Pipistrellus* spp. were observed on the window frame, window sill and on the ground beneath corresponding gaps behind the uneven hanging tiles (**Photographs 16 & 17**).

Photograph 14. Gaps behind hanging tiles above bay window (TN6).

Photograph 15. Gaps behind front bay hanging tiles (TN6).

Photograph 16. Small sized bat dropping on windowsill.

Photograph 17. Small sized bat droppings on the ground below the window.

5.2.7 The soffits were tightly fitted to the brickwork across the property, with intact sealant

present throughout (**Photographs 18 & 19**).

Photograph 18. Soffits tight to brickwork (front elevation).

Photograph 19. Soffits tight to brickwork (rear elevation).

Internal Survey

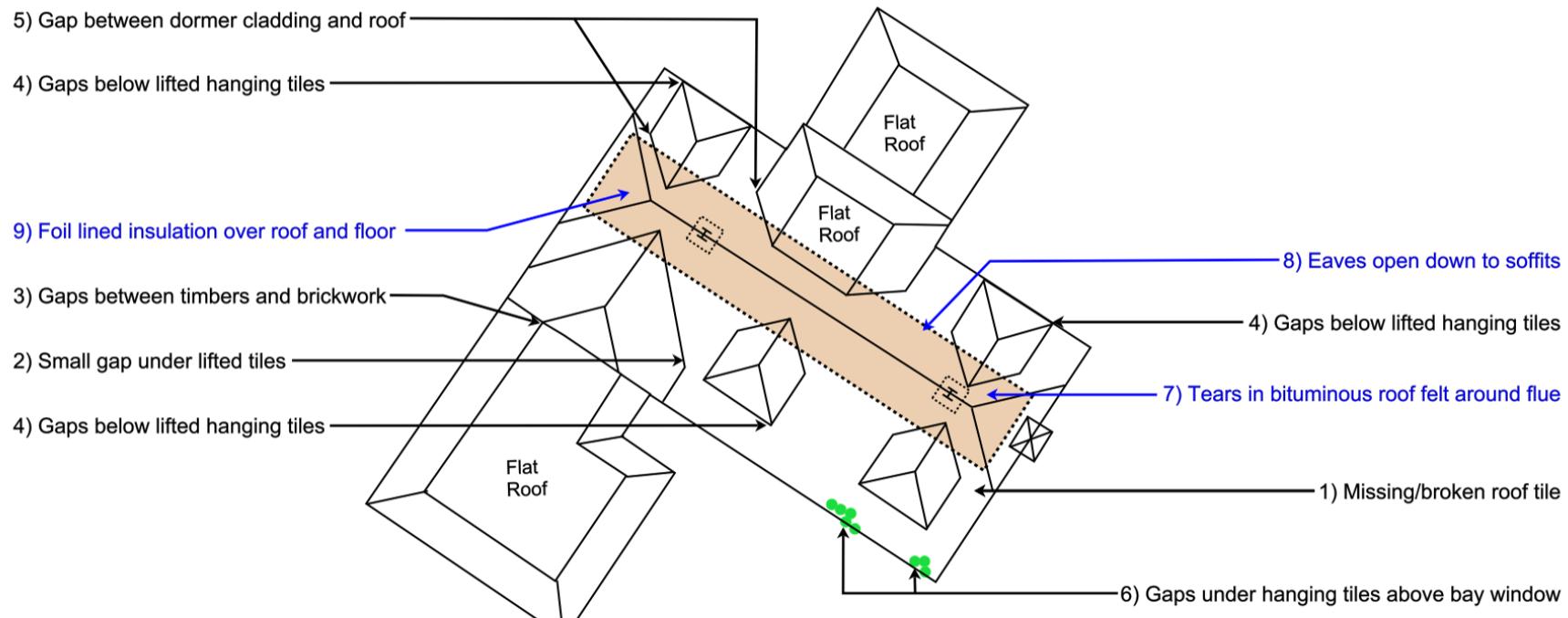
5.2.8 The property had one small roof space above the central first floor accommodation, accessible via two loft hatches. The roof was of 'cut and pitch' construction with a maximum height of approximately 1.5m. The roof was lined with intact bitumen reinforced liner, with small gaps around the flues on the rear elevation. The ridge beam was free from cobwebs. Three of the dormer voids were visible from the main void and seen to be lined with a bituminous felt and fibreglass insulation on the floor. The central mansard roofed dormer, which was lined with a breathable/plastic felt, was also visible but not accessible due to the restricted height. Eaves were open to the soffits throughout the void. The floor had fibreglass insulation with chipboard over the top in the central accessible section. There was additional synthetic-coated insulation at the northern end of the void, blocking inspection access to the two northern dormers and covering the floor. No bat droppings were observed within the void (**Photographs 20 – 25; Target notes 7 - 9**).

Photograph 20. Small roof void with intact liner and cobweb free ridge beam.

Photograph 21. Occasional tears around flues (TN7).

Photograph 22. Dormer void with intact bitumen felt and fibreglass insulation.

Photograph 23. Mansard dormer void with breathable/plastic roof lining.



Photograph 24. Eaves open to the soffit (TN8).

Photograph 25. Additional foil lined insulation covering the roof and floor at northern end of void (TN9).

N

n. External Target Note

n. Internal Target Note

● Small-sized bat droppings

Drawn by:	Date	Scale:	Longridge, Wick Hill Lane Finchampstead		
VW	Nov 2025	Not to scale	Preliminary Roost Assessment Findings		JOHN WENMAN ecological consultancy

Figure 1. Preliminary Roost Assessment findings plan.

6 DISCUSSION

6.1 ASSESSMENT OF POTENTIAL ROOST SUITABILITY

6.1.1 The property's leafy suburban setting and proximity to priority habitat deciduous and ancient woodland, provides habitats that could be used as flight paths and feeding opportunities for any bats roosting locally, also connecting to high-quality foraging habitats, such as the nearby woodland and lakes. The search of granted bat mitigation licences within the last 10 years identified four species known to be roosting within a 2km radius of the property: common pipistrelle (*Pipistrellus pipistrellus*), soprano pipistrelle (*Pipistrellus pygmaeus*), Nathusius' Pipistrelle (*Pipistrellus nathusii*) and brown long-eared (*Plecotus auritus*).

6.1.2 As no evidence of roosting bats was found internally, it is considered highly unlikely the property supports void dwelling bat species, such as the locally recorded brown long-eared (*Plecotus auritus*) bat. The observation of eight small sized bat droppings externally beneath crevice features suitable for bats on the bay window, shows that it is highly likely that this section of the house supports roosting bats (considered likely to be a crevice-dwelling pipistrelle species (*Pipistrellus* spp.) from the roost characteristics and size and shape of the droppings visible).

6.1.3 The property had the following potential bat crevice roosting opportunities;

- Gaps under lifted/broken/missing roof tiles (**Photographs 4 & 6; Target note 1**);
- Gaps under lifted valley tiles (**Photograph 5 ; Target note 2**);
- Gaps under a tear in the felt and around the timber/brickwork join under the garage link walkway (**Photographs 9 & 10; Target note 3**);
- Gaps behind and around the hanging tiles on all dormer windows and rear mansard roofed dormer (**Photographs 11 - 14; Target note 4**); and
- Gaps behind the hanging tiles on the front elevation bay window (**Photographs 15 & 16; Target note 5**).

6.1.4 These features may lead to potential crevice roost sites for crevice-dwelling bats, such as the locally recorded common pipistrelle (*Pipistrellus pipistrellus*) and soprano pipistrelle (*Pipistrellus pygmaeus*). Evidence of crevice-roosting species is typically hidden from view in areas such as gaps between tiles and internal linings/insulation and

therefore the absence of evidence does not equate to the absence of bats.

6.1.5 Common pipistrelle (*P. pipistrellus*) and soprano pipistrelle (*P. pygmaeus*) are the most abundant and widespread bats in Great Britain. These species occur in almost any habitat type and are well adapted to the built environments; they are the species most regularly reported roosting in houses and churches (Mathews *et al.* 2018). Brandt's / whiskered bat (*M. brandtii* / *mystacinus*) are small *Myotis* species that are widespread and will roost in the same buildings as the much more abundant pipistrelle species (Mathews *et al.* 2018). Roosts supporting these species hold site to county level conservation importance subject to the roost type, i.e. non-breeding roosts supporting individual bat or small groups through to maternity roosts supporting large numbers of female bats (Reason & Wray 2025).

6.1.6 Considering the evidence of bats associated with roosting features externally indicating that it is highly likely the bay window supports roosting bats, the wooded nature of the surrounding habitats, and availability of crevice roosting opportunities throughout the property it is considered overall to be of moderate potential suitability for crevice-dwelling bats (see **Appendix 1** for potential suitability categories).

7 IMPACT ASSESSMENT

7.1 Potential Impacts of Development Proposals

Overview

7.1.1 The development proposals for the house comprise a single and a double-storey extension, at the rear. The impacts of the proposals, during construction and post development, have been assessed in accordance with the mitigation hierarchy, as follows:

Construction Phase

7.1.2 The proposals will directly impact the potential crevice roosting opportunities identified at the northern corner of the property, as well as other potential roost sites potentially being impacted during construction by blocking access e.g. with scaffolding. Construction activities could therefore lead to direct/indirect disturbance, injury and/or death of bats. The proposals will not have an impact on the hanging tiles on the front elevation of the building that showed evidence of the presence of bats and are highly likely to support roosting bats.

Post Development

7.1.3 In the absence of mitigation and/or compensation, the proposals may result in the permanent loss of a bat roost(s). The loss of a roost has potential to significantly affect the local distribution or abundance of a bat species, subject to its conservation status.

7.2 Conclusions

7.2.1 If the proposals cannot be altered to avoid adverse effects on features with potential to support bat roosts, further surveys are recommended to determine if bat roosts are present, in order to be able to assess fully whether development proposals will have an adverse effect on bats and/or their roosts (see **Appendix 3** for further survey rationale). The approach to recommended further surveys are detailed in **Section 8.1** below.

8 RECOMMENDATIONS

8.1 Further Surveys

8.1.1 Further surveys are recommended to determine the presence or absence of bat roosts in the house, in order to be able to assess fully whether the proposals will have an adverse impact on bats and/or their roosts.

8.1.2 A minimum of two dusk emergence survey visits should be undertaken in the period of May to September, with at least one between May to August; the survey visits should be spaced at least three weeks apart (Collins 2023). If a high number of emerging bats is observed during either visit e.g. indicative of a maternity roost for example, a third dusk emergence survey is recommended to help characterise the roost. This would also be carried out between May to September and spaced at least three weeks from the previous visit. These survey visits will determine the presence or likely absence of bats which is necessary to inform an impact assessment, and if roosting bats are present, will characterise the roost to inform a mitigation strategy..

8.1.3 If roosting bats are present, once roost characterisation is complete, an impact assessment with reference to the mitigation hierarchy will be made. In cases where the adverse effects caused by the development proposals are unavoidable, an application for a European Protected Species (EPS) mitigation licence or the registration of the site under the Bat Mitigation Class Licence (BMCL) would be required to permit the work to proceed lawfully. An EPS mitigation licence or BMCL can be issued by Natural England if the three licensing tests (detailed in **Paragraph 3.3.1**) have been satisfied by the proposals.

8.1.4 To satisfy one of the licensing tests, it would be necessary to demonstrate that the 'favourable conservation status' of the bat species using the building(s) is maintained during the construction phase and post development. A mitigation strategy setting out avoidance, mitigation, compensation and enhancement measures would be required to achieve this. Indicative and provisional measures are summarised in **Section 8.2** below.

8.2 Indicative Mitigation Strategy

8.2.1 If further surveys and the impact assessment have demonstrated that an EPS mitigation licence or Bat Mitigation Class Licence (BMCL) (for low conservation roosts) is required to permit the building work to go ahead lawfully, the commencement of construction activities impacting the bat roosts would be timed to avoid the periods

when bats are most susceptible to disturbance, i.e. winter hibernation period if there is a reasonable likelihood of hibernating bats (mid-November to mid-March) and peak breeding season (May to August) if a maternity colony is present.

- 8.2.2** Alternative roost sites would be made available to bats prior to and throughout the construction phase by installing at least one woodcrete bat box (suitable for the type of roost/species present) on a suitable mature tree or a pole mount. The bat box should be positioned at least 4 metres from the ground, away from artificial lighting and sheltered from strong wind while being exposed to sunshine (usually south, south east or south west facing).
- 8.2.3** Before the commencement of construction activities impacting the bat roost (i.e. the licensable works), a licensed ecologist or 'Registered Consultant' under the BMCL would provide a toolbox talk to all contractors working on site detailing how bats use buildings, legal protection, working methods (i.e. roof strip by hand), actual and potential roost sites, actions to be taken if a bat is found and personal safety procedures.
- 8.2.4** A soft strip approach to the works affecting the bat roost(s) would be adopted, i.e. careful removal of roof coverings and cladding by gloved hands and handheld tools under the direct supervision of a licensed ecologist or 'Registered Consultant'. In the event that a bat is found during the course of the works, the licensed ecologist or 'Registered Consultant' would capture the bat and transfer it directly to a woodcrete bat box installed in advance.
- 8.2.5** Replacement bat access points and roost sites may need to be created and/or reinstated into the building as part of an EPS mitigation licence or BMCL site registration. This compensation should aim for like-for-like roost sites with access points corresponding as closely as possible to the previous locations.
- 8.2.6** Where access is provided for bats, a bituminous roofing felt that does not contain polypropylene/polyethylene filaments (e.g. bitumen felt type 1F) or a non-bitumen coated 'breathable' membrane that has passed the snagging propensity test (e.g. TLX 'Bat Safe') should be used; other non-bitumen coated membranes are harmful to bats and must be avoided.

9 REFERENCES

CIEEM (2019b). Advice Note on the Lifespan of Ecological Reports and Surveys. CIEEM, Winchester.

Collins, J (ed.) (2023). Bat Surveys for Professional Ecologists: Good Practice Guidelines (4th edition). The Bat Conservation Trust, London.

Mathews F., Kubasiewicz L.M., Gurnell J., Harrower C.A., McDonald R.A., Shore R.F. (2018). *A Review of the Population and Conservation Status of British Mammals*. A report by the Mammal Society under contract to Natural England, Natural Resources Wales and Scottish Natural Heritage. Natural England, Peterborough.

Mitchell-Jones, A. J. & McLeish, A. P. (2004). *Bat Workers' Manual (3rd edition)*. JNCC, Peterborough.

Reason, P.F. and Wray, S. (2025). UK Bat Mitigation Guidelines: a guide to impact assessment, mitigation and compensation for developments affecting bats. Version 1.2 CIEEM, Ampfield.

APPENDIX 1 – POTENTIAL SUITABILITY CATEGORIES FOR ROOSTING BATS

The categories detailed in **Table 2** below are derived from the ‘*Bat Surveys for Professional Ecologists: Good Practice Guidelines (4th edition)*’ (Collins 2023) and provide guidance for assessing the potential suitability of buildings (and other structures) for roosting bats. These categories are applied using professional judgement and irrespective of whether the presence of a bat roost has been confirmed during a survey, as additional bat roosts could be present which have not yet been discovered.

Table 2. Categories for potential suitability of buildings (and other structures) for roosting bats.

Potential Suitability	Category Justification
None	A building (or structure) that has no features likely to be used by any roosting bats at any time of the year (i.e. a complete absence of cracks, crevices or voids that could provide suitable shelter).
Negligible	A building (or structure) that has no obvious features likely to be used by roosting bats, but in this case a small element of uncertainty remains as bats will occasionally use small and apparently unsuitable features. This category may also be used where a bat could potentially roost due to one attribute, but it is considered unlikely due to another attribute (e.g. a feature that is subject to constant illumination from artificial lighting).
Low	A building (or structure) that has one or more potential roost sites suitable for opportunistic use by individual bats at any time of the year. However, these potential roost sites for bats do not provide sufficient space, shelter, protection, conditions and/or surrounding suitable habitat to be used regularly or by large numbers (i.e. unlikely to be suitable for a maternity colony and not a classic hibernation site).
Moderate	A building (or structure) that has one or more potential roost sites suitable for regular use by individual bats, or small non-breeding groups, due to sufficient space, shelter, protection, conditions and surrounding habitat. However, these potential roost sites for bats are unlikely to support a roost of high conservation status with regards to the type of roost only (i.e. maternity colonies and classic hibernation sites).
High	A building (or structure) that has one or more potential roost sites suitable for use by large numbers of bats more regularly and for longer periods of time due to sufficient space, shelter, protection, conditions and surrounding habitat. These potential roost sites for bats are capable of supporting high conservation status roosts (i.e. maternity colonies and classic hibernation sites).

APPENDIX 2 – DEFINITION OF BAT ROOST TYPES

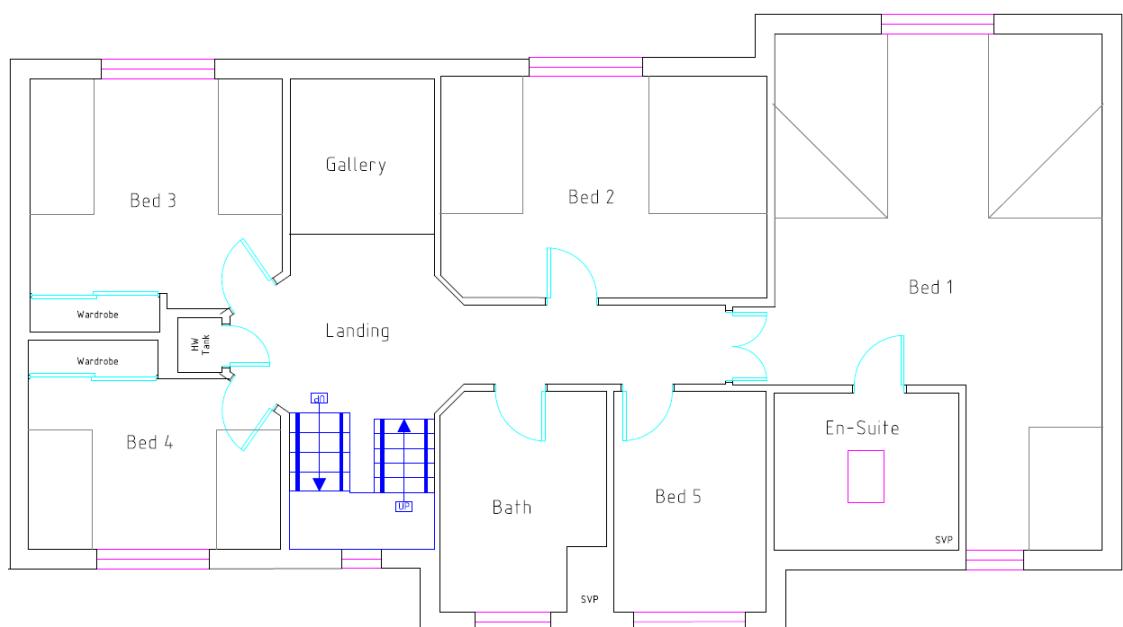
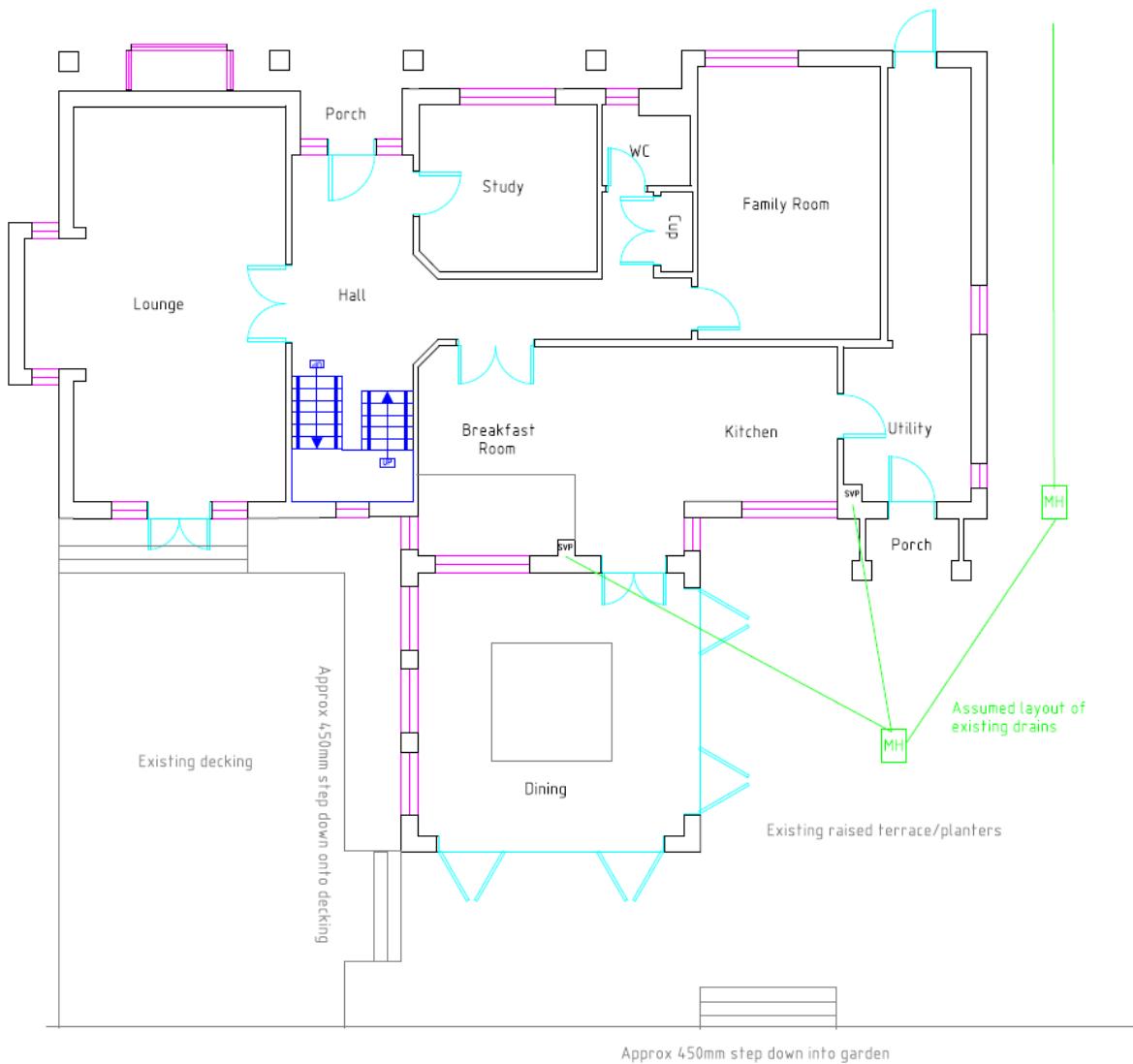
The potential suitability of a building in conjunction with any evidence of bat presence is used to provide an initial assessment of likely roost type and importance. The types of roost considered are based on the following Natural England definitions:

- Day roost – a summer resting place used by individual bats, or small non-breeding groups, during the day;
- Night roost – a resting place used by individual bats on occasion, or by a whole colony regularly, during the night;
- Feeding perch – a resting place used by individual bats, or a few individuals, primarily for short periods of feeding during the night;
- Transitional roost – a place used by a few individual bats, or occasionally small groups, for a short period of time upon waking from hibernation or in the period prior to hibernation;
- Maternity roost – a place used by small to large groups of female bats to give birth and raise their young to independence;
- Hibernation roost – a place used by individual bats, or in groups, during winter where there is a constant cool temperature and high humidity; and
- Satellite roost – a place used by a few individuals to small groups of breeding female bats found in close proximity to the main nursery colony throughout the breeding season.

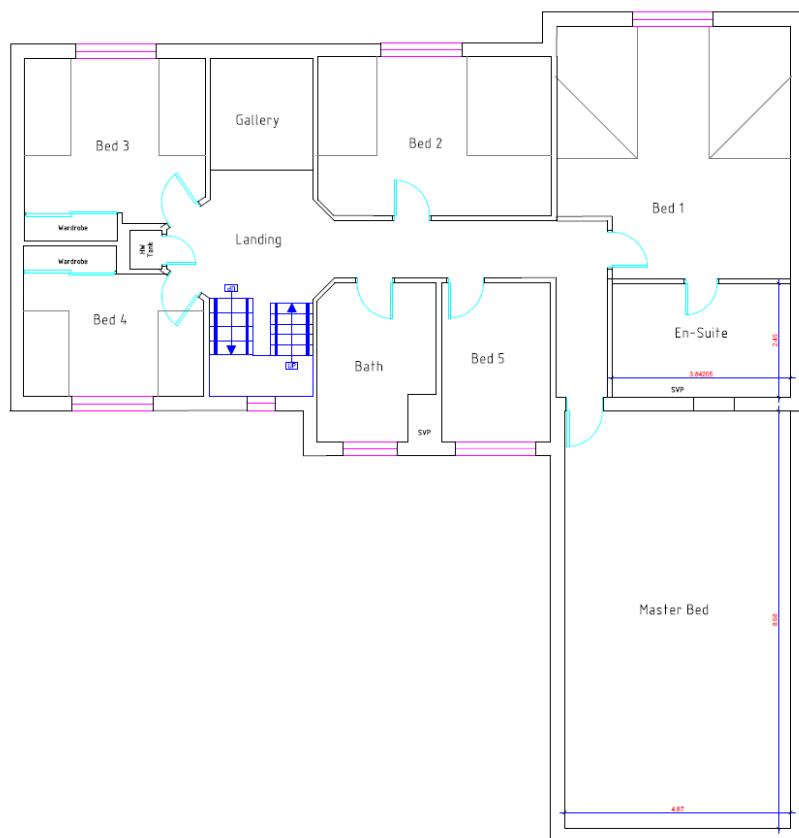
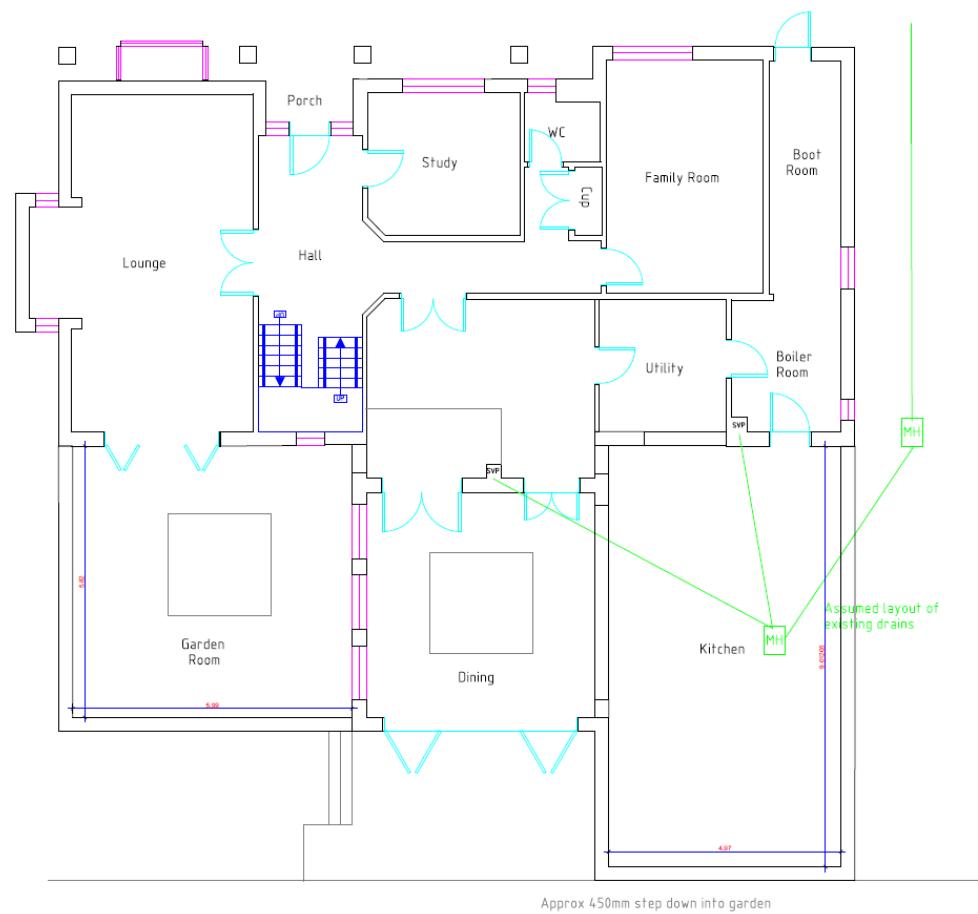
The importance of a bat roost is underpinned by the conservation status of the suspected species (i.e. the distribution/rarity of a species in a specific geographic location) and the type of roost (i.e. not all roosts have the same level of importance in supporting the local bat population). Further roost characterisation surveys may be required to fully determine the importance of a confirmed roost to allow for a robust impact assessment.

APPENDIX 3 – FURTHER SURVEY RATIONALE

In cases where no evidence of use by bats is found during a building inspection but the possibility of their presence cannot be ruled out, further presence/likely absence survey is likely to be required if the development proposals will impact potential roost sites. Emergence surveys are carried out to establish the presence or likely absence of roosting bats in buildings (and other structures) and these are designed in accordance with the '*Bat Surveys for Professional Ecologists: Good Practice Guidelines (4th edition)*' (Collins 2023) detailed in **Table 3** below.



Table 3. Recommended further survey for establishing presence/likely absence of roosting bats in buildings (and other structures).

Potential Suitability	Further Survey
None	No further surveys are required.
Negligible	No further surveys are required.
Low	A minimum of one dusk emergence survey visit should be undertaken in the period of May to August. However, if all areas (including cracks, crevices and voids) can be thoroughly inspected and no evidence of use by bats is found, then emergence surveys may not be required. In cases where a complete inspection cannot be carried out, professional judgement and proportionality should be applied when assessing the impacts of the development proposals.
Moderate	A minimum of two dusk emergence survey visits should be undertaken in the period of May to September, with at least one of the surveys between May and August; the survey visits should be spaced at least three weeks apart.
High	A minimum of three separate dusk emergence survey visits should be undertaken in the period of May to September (inclusive), with at least two of the surveys between May and August; the survey visits should be spaced at least three weeks apart.



In cases where the PRA and/or further survey establishes the presence of roosting bats in a building (or structure), this will likely trigger the need for roost characterisation to collect sufficient information to inform the impact assessment and mitigation strategy. The roost characterisation comprises information collected during the PRA, emergence surveys and by other methods, such as DNA analysis of bat droppings, and ultimately aims to determine the bat species roosting; the number of bats the roosts support; the roost access points; the locations of the roosts and the types of roost present. This information is crucial when applying for planning permission and/or a European

Protected Species mitigation licence.

APPENDIX 4 – EXISTING FLOOR PLANS

APPENDIX 5 – PROPOSED FLOOR PLANS

