

Design and Access Statement

Agent Address:

Geo Green Power Ltd, Bradmore Business Park, Loughborough Road, Bunny, NG11 6QA

Site Address:

Coppard Plant Hire, Ltd, Reading Road, Winnersh, Wokingham, RG41 5HA

Date: 11/02/2025

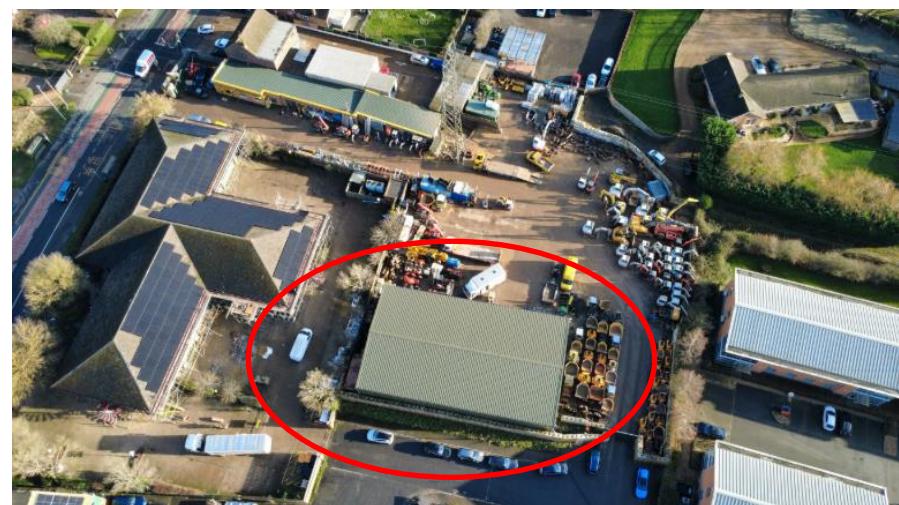
Contents

1. Site	Pg 2
2. Character	Pg 2
3. Access	Pg 4
4. Community Safety	Pg 4
5. Environmental Sustainability	Pg 5
6. Cumulative Impact	Pg 6
7. Wildlife and Trees	Pg 6
8. Heritage Statement	Pg 7
9. Conclusion	Pg 8
Appendix A	Pg 9

Site: Coppard Plant Hire Ltd, Reading Road, Winnersh, Wokingham, RG41 5HA

Proposal: (Retrospective) 74.82kW roof mounted solar PV array

The applicant approached Geo Green Power to ask for advice on how they could best utilise renewable energy generation opportunities on their land to reduce the environmental impact of the business. Geo Green Power advised the installation of a 74.82kW roof mounted solar PV system.

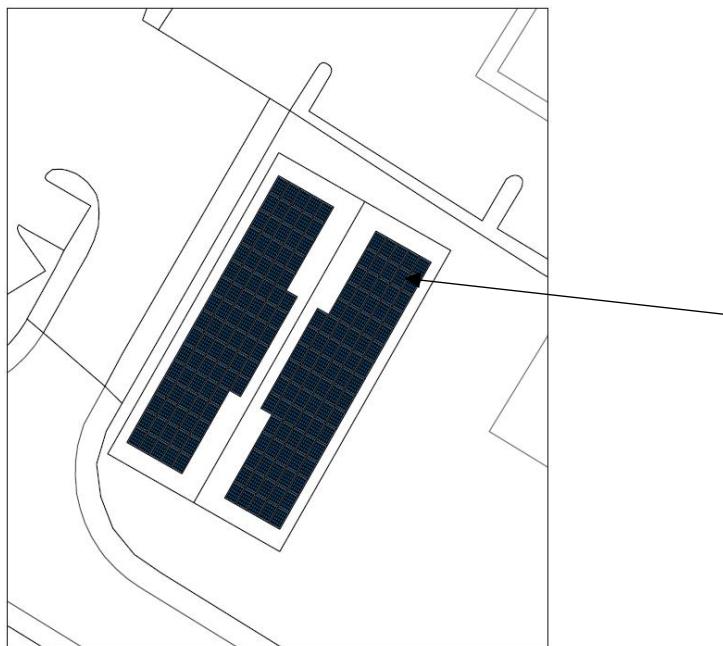

1. Site

The site is Coppard Plant Hire Ltd, a new warehouse (ref: 221900) located in Winnersh, a suburban village in Wokingham.

Figure 1: Ariel View of site (reference: 'Google Maps')

Figure 1b: Ariel View of proposed site (reference: 'Geo Green Power')

The site is not within a Green Belt area, National Park or Area of Outstanding Natural Beauty; nor is the site a Listed property, Scheduled Monument, World Heritage Site or within a Conservation Area.


2. Character

Geo Green Power designs and installs solar PV systems with high regard for the aesthetics and impact on surrounding areas.

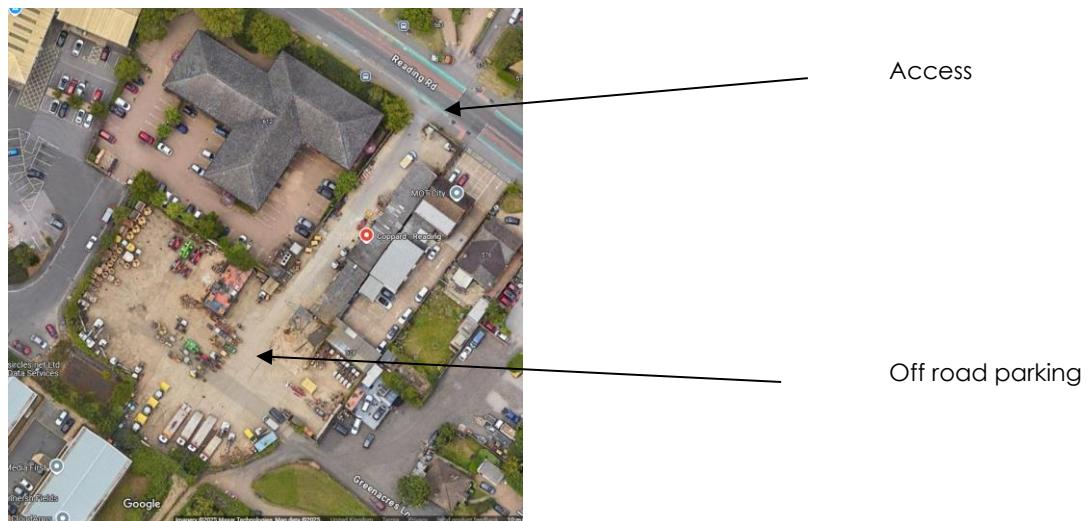
In order to meet the local requirements, Geo Green Power have ensured that this solar PV system is a non-permanent installation by using pitched roof mounting systems, therefore eliminating the need to fix the mounting system into concrete.

The solar PV modules utilised are 172 x Canadian Solar 435w panels arranged in landscape orientation (the datasheet has been included separately). These modules have a 3.2mm tempered glass front cover with anti-reflective coating to ensure that there are no undesirable side effects related to light reflecting glare.

Figure 2: Solar panel layout (reference: Geo Green Power)

74.82kW installed,
comprising of 172 x 435w
solar panels; 86 panels per
roof

The inverters are mounted within the property hidden from view and not accessible to the public. The cabling runs directly from the solar PV array to the existing supply. Scaled drawings have been included within the application showing the layout of the panels.


Once the PV system is no longer in operation the system will be removed immediately. Solar PV systems have no moving parts and therefore maintenance to the arrays is minimal. There should be no need for the array to be accessed on foot any more than 4 or 5 times over the duration of the guaranteed period of twenty years.

Pictures of the level of visibility of the site can be found in Appendix A Viewpoints

3. Access

As the solar PV array is located on the roof of 'Coppard Plant Hire', accessibility to public highways, cycle paths or foot paths is not impacted, nor will emergency vehicles or connections that these may require. The site has designated off-road parking, as can be seen in Figure 3, which will remain unaffected by the solar panel installation.

Figure 3: Vehicle access (reference: 'Google Maps')

The delivery schedule of installing this solar PV array did not greatly increase the level of traffic to the business. Contractor vans (such as Vauxhall Vivaros) made daily trips to site, including to deliver the solar panels, mounting kit and inverter. These vans accessed the site from 'Reading Road (A329)'. Due to the short timeframe of the project and limited number of vehicles required, the proposal had minimal access impact. Visuals of the site entrance and access route can be found below in Appendix A 'Viewpoints'.

4. Community Safety

Geo Green Power will make the PV array as safe and secure as possible. This includes meeting specific health & safety requirements during installation and for the lifetime of the system. All inverters will be located above ground level and are type tested and IP rated. The solar array does not have any moving parts that could impact the safety of the system. All work and materials used in the system will meet the relevant electrical and mechanical standards including, but not limited to, BS7671 compliance for any A/C components, and MCS compliance regulations for D/C components, G99 IET wiring regulations.

Geo Green Power is NICEIC and CHAS accredited. As the PV array is installed on the roof of a private property it shall not impact the safety of the general public.

5. Environmental Sustainability

The applicant wishes to reduce the environmental impact of the property and a 74.82kWpk solar PV array produce approximately 66,800kWh of electricity per annum, saving approximately 16 tonnes of CO₂ per annum. This will reduce the environmental impact of the property on the surrounding area immediately.

Although not visible to the public eye, the solar PV system would provide public benefit. A portion the electricity that the solar PV system generates, but is not utilised, will be exported back to the grid and can be utilised by the public. This means that the public can also utilise electricity which has been generated by renewable energy, further reducing the reliance on fossil fuels and power stations. Additionally, as fossil fuels are responsible the majority of pollution, the solar PV system would reduce air pollution and subsequently improve the health of the surrounding area. The installation of the solar PV system would thus not solely serve the applicant but would also benefit other households.

The solar PV system has a limited impact on the appearance and openness of the surrounding area and only takes up a proportionally small area within the applicant's boundary. We would draw attention to the fact that the site is already well contained by physical barriers within the landscape. A pitched roof mounting system has been utilised meaning that no concrete base or excavation was required, and the land remains unaffected.

Furthermore, this location has not only been chosen for the minimal visual impact but also to assist in the development having minimal amenity impact. The site has been chosen because of the proximity to the private electricity supply to which it is connected in to, and therefore the reduction in the amount of ancillary infrastructure needed to support the scheme.

In addition, the Government has a commitment to solar development and has identified this form of renewable energy production as having an important role to play in a balanced UK energy policy. The Climate Change Act commits the UK government by law to reducing greenhouse gas emissions by at least 100% of 1990 levels (net zero) by 2050. Solar energy is therefore capable of providing a source of energy at a time when there is an overall climate crisis in terms of energy supply and security within the UK. It is important to note that paragraph 158 of the NPPF states:

158. *When determining planning applications for renewable and low carbon development, local planning authorities should:*

(a) not require applicants to demonstrate the overall need for renewable or low carbon energy, and recognise that even small-scale projects provide a valuable contribution to cutting greenhouse gas emissions

One of the core principle planning policies of the NPPF is a move towards a low carbon economy and the Framework is clear in its support of renewable energy projects. The generation of renewable electricity at the site is a positive factor in favour of the proposal and it would make a valuable contribution in the context of wider environmental benefits.

In the future, should the PV array need to be moved or taken down, it is a non-permanent fixture and so can be done with minimal impact on the surrounding areas.

Water sources and waste management will not be affected.

6. Cumulative Impact

Unlike large scale solar grid generation systems, this application is a proposal for a system that will directly feed the applicant's own business, allowing the applicant to lower their carbon footprint by around 16.7 tonnes of CO₂ per annum. The solar PV system will produce energy similar to the applicant's private usage so this proposal is very specific to this particular set of circumstances and will not set a precedent for future large 'grid only' solar PV arrays. This project is one of the few practical alternatives there is to help the business to transition to a lower carbon energy use footprint. As it has been tailor made to fit the applicant's needs, there should not be a large surplus being exported to the grid and therefore any other surrounding installs should be considered separately rather than cumulatively.

7. Wildlife and Trees

When designing the current proposal, thought was given to section 11 of the NPPF. There shall be no security lighting installed so this solar PV system will not contribute to the light pollution of the surrounding area. Additionally, the system will not contribute to noise pollution as there are no moving parts in a solar PV system and therefore wildlife that may be situated in the surrounding trees and hedgerow shall not be adversely affected. No building demolition was required and there are no ponds in the vicinity.

Specific attention has also been paid to BS5837-2012 "Trees in relation to design, demolition and constructions". All existing hedgerows, trees and shrubbery that are currently at the applicant's site were considered. It is well understood that these are all 'material considerations' in the planning process, and to this end, no demolition was required in order to accommodate the proposal (section 5.4).

Section 5.3 of the BS5837-2012 outlines that the Root Protection Area of any on site tree should not be affected by the proposed development. The construction of this development is purposefully roof mounted, minimizing disruption to the surrounding land and shrubbery. Furthermore, the development

is situated far enough away from the trees so that direct damage to the development shall not occur, e.g. from falling branches, or seasonal nuisances, meaning that there will be no pressure in the future to remove these trees. Instead, the trees and hedgerow which provide character and visual amenity to the surrounding area shall be retained and not adversely affected.

8. Heritage Statement

The site is not a Listed Property nor a Scheduled Monument and does not fall within a World Heritage Site and there are few heritage assets in the surrounding area. The closest heritage asset is 'WHITE COTTAGE, Grade: II, List Entry Number: 1136200'.

Figure 4a: Heritage Map (reference: Historic England website)

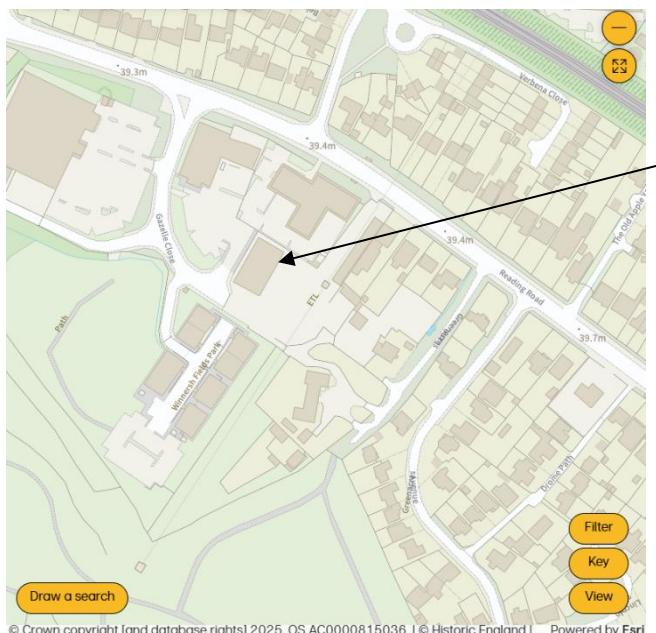
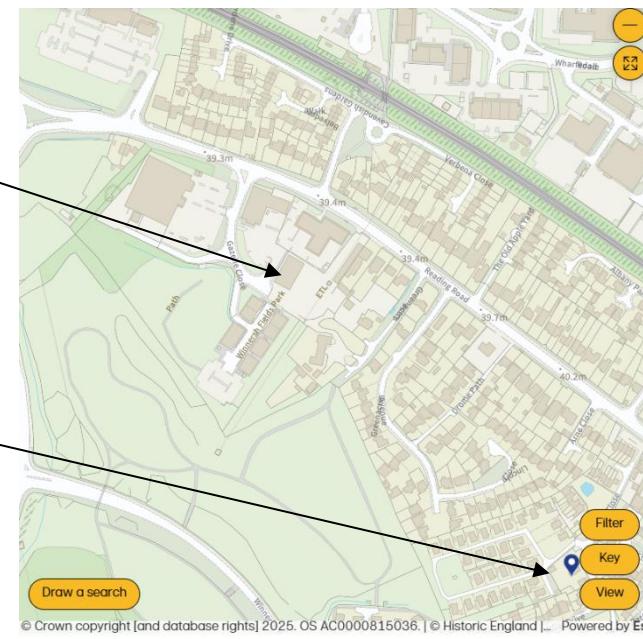



Figure 4b: Heritage Map (reference: Historic England website)

The solar PV array is located just over 400m away from the heritage assets. The 74.82kW roof mounted solar PV array does not affect the heritage asset from a material point of view. The array is not installed on the Listed property and no physical demolition works or material works were required on the Listed property to facilitate the solar PV installation.

Substantial screening lies between the proposed development site and surrounding properties, including shrubbery, trees and other properties. This means that the proposal is not highly visible to surrounding properties during installation or once completed.

Additionally, the proposal does not contribute to the noise or light pollution of the surrounding area and therefore this will have no negative impact on the heritage asset either. Rather the proposal generates clean renewable energy, reducing pollution of the surrounding area, meaning that there would only be positive effects on the heritage assets and the surrounding area.

9. Conclusion

Overall, the enclosed application presents a scheme that is appropriate to the setting of the site, with the intention to provide a proposal with a sympathetic scale, form and the use of appropriate materials.

The proposal does not affect the existing access and the surrounding heritage assets would continue to be conserved. The proposal presents no harm to the public but rather is a viable solution to transition the business into utilising renewable technology in order to lower the applicant's carbon footprint.

Appendix A: Viewpoints (reference: 'Google Maps')

Viewpoint A : Gazelle Close

Viewpoint B: Gazelle Close

Viewpoint C: Reading Road

Viewpoint D: Reading Road

Viewpoint E: Reading Road (Access)

Viewpoint F: Site (pre solar panel installation)

Viewpoint F: Site (pre solar panel installation)

Viewpoint F: Site (pre solar panel installation)

Viewpoint F (solar panels installed)

Viewpoint F: Site (solar panels installed)

