

1.0 Introduction

- 1.1 This Technical Note has been prepared on behalf of Winnersh Midco S.A.R.L to accompany a planning application relating to development proposals at Winnersh Triangle Plot 810, Winnersh Business Park (herein after referred to as 'the site').
- 1.2 The site is located on the northern side of Winnersh Business Park, approximately 1.5 kilometres northwest of Winnersh village centre, and falls within the administrative boundary of Wokingham Borough Council (Unitary Authority). The location of the Site is illustrated on Figure 1.1.

Figure 1.1: Site Location

- 1.3 The new EV charging infrastructure forms part of the 810 Plot which has been subject to a recently submitted planning submission for a new building to replace the existing 810 building. The new parking spaces and transformer will be within a reconfigured car park/service area as part of the application site.
- 1.4 The EV related development proposals for Plot 810 seek to create new electric vehicle charging points to serve the new building by creating 10 vehicle EV charging points. The new electric vehicle charging facility will be accompanied by a new transformer adjacent to an existing substation in the north-east corner of the site.
- 1.5 This Technical Note has been prepared to provide further detail on the proposed electric vehicle charging stations and associated infrastructure within part of the Winnersh Triangle Estate.

2.0 Existing Conditions

2.1 The site currently comprises of a single building with car parking to the front of the building and a service area to the north-east of the site. The building is currently vacant and secured by barriers/hoarding. The existing site arrangements are presented on Figure 2.1.

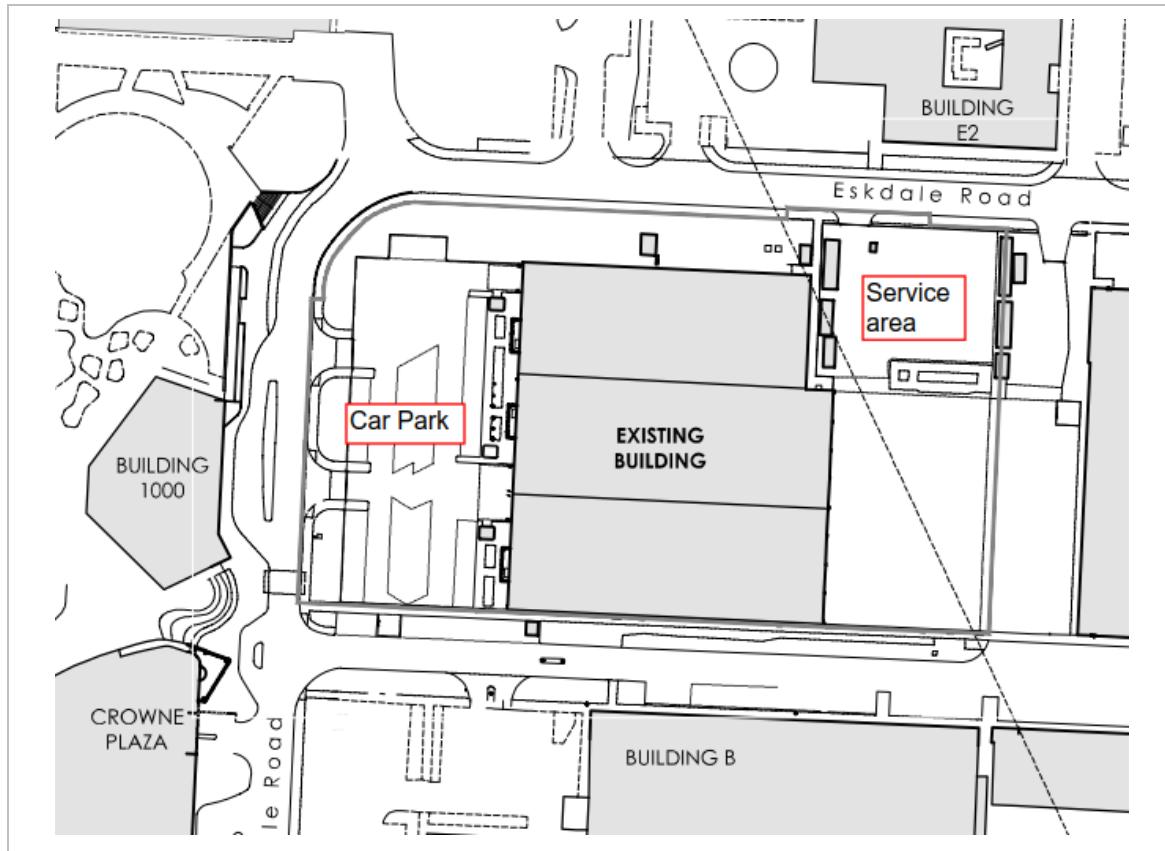


Figure 2.1 – Winnersh Triangle – Existing Building 810 site arrangements

3.0 Development Proposals

Overview

3.1 This section provides further detail on the development proposals having regard to relevant design guidance. The development proposals comprise of the following:

- ▶ Reconfiguration of car park and service area to create new EV charging points to serve the future occupant of Building 810 at the Winnersh Triangle Business Park; and
- ▶ Provision of a new transformer to serve the new electric vehicle charging points located to the east of the EV spaces.

3.2 The proposals will form part of a recently submitted planning application for Building 810. The proposed general arrangements and EV/Transformer proposals for Building 810 redevelopment are presented on Figure 3.1.

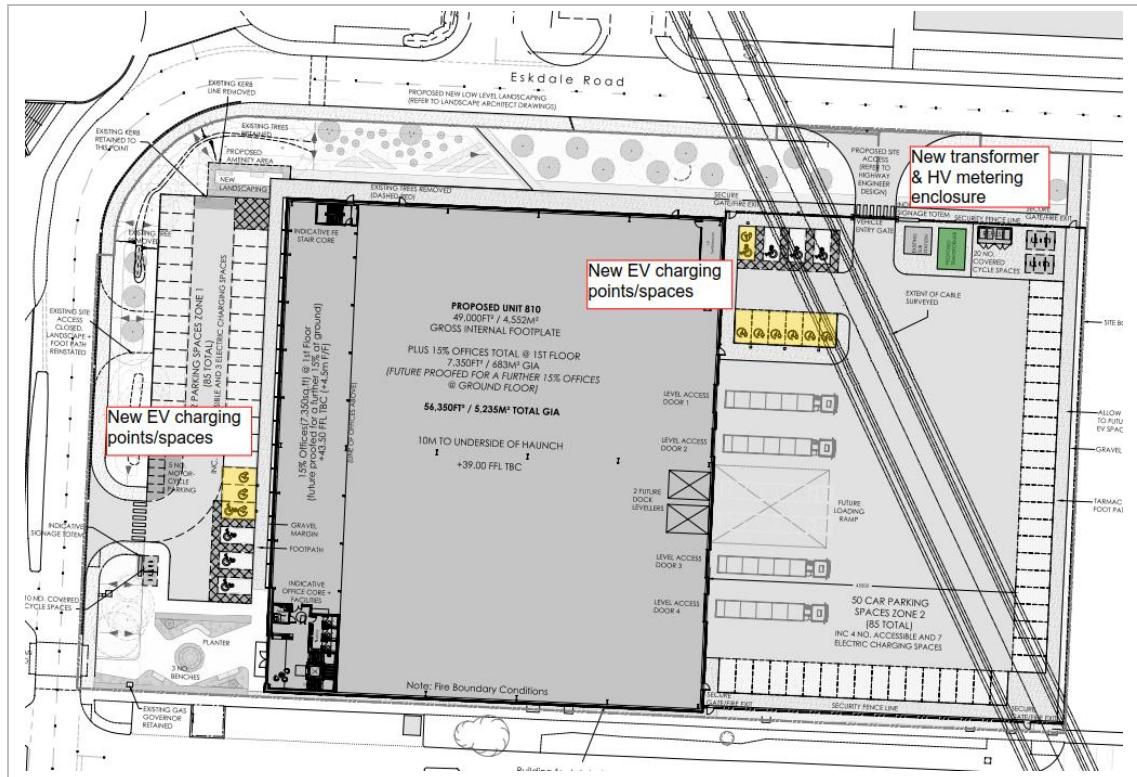


Figure 3.1: Building 810 – Proposed general layout (Plot 810 Redevelopment scheme)

Proposed Parking

3.3 The proposed parking layout is illustrated on Motion Drawing 2207015-204 which is included in [Appendix A](#). The drawing demonstrates that the proposed electric vehicle charging stations will be installed within the hardstanding within the proposed car park/service area. The proposed arrangement will provide up to 10 EV charging points.

3.4 The charging points will be contained within part of the existing car parking spaces. The particular spaces will be provided with hatching to the south of the EV charging spaces which will accommodate vehicles if necessary.

Specifications and Dimensions

3.5 The proposed electric vehicle charging points are to be installed within the existing site hardstanding and the base for the EV charging point will measure 600mm in width by 600mm in depth. The installation of the electric vehicle charging stations will be exercised in accordance with the typical specification provided in the RAW Charging document included in [Appendix B](#).

3.6 In addition to the installation of the electric vehicle charging stations, it is proposed that a transformer and HV metering enclosure will be installed to the west of the proposed electric vehicle charging stations. The proposed transformer will be similar in terms of dimensions and appearance to the existing transformers located around the Winnersh Triangle Business Park, an image of one of them is provided in Figure 3.2.

Figure 3.2 – Proposed Transformer – Example of appearance/elevation (image from Google Streetview – September 2023)

3.7 The proposed transformer floor plan and elevation drawings, HV metering enclosure and the upstands (chargers) plans for Winnersh 810 are provided on Motion drawings 2207015-205 and 2207015-207 included in **Appendix C**.

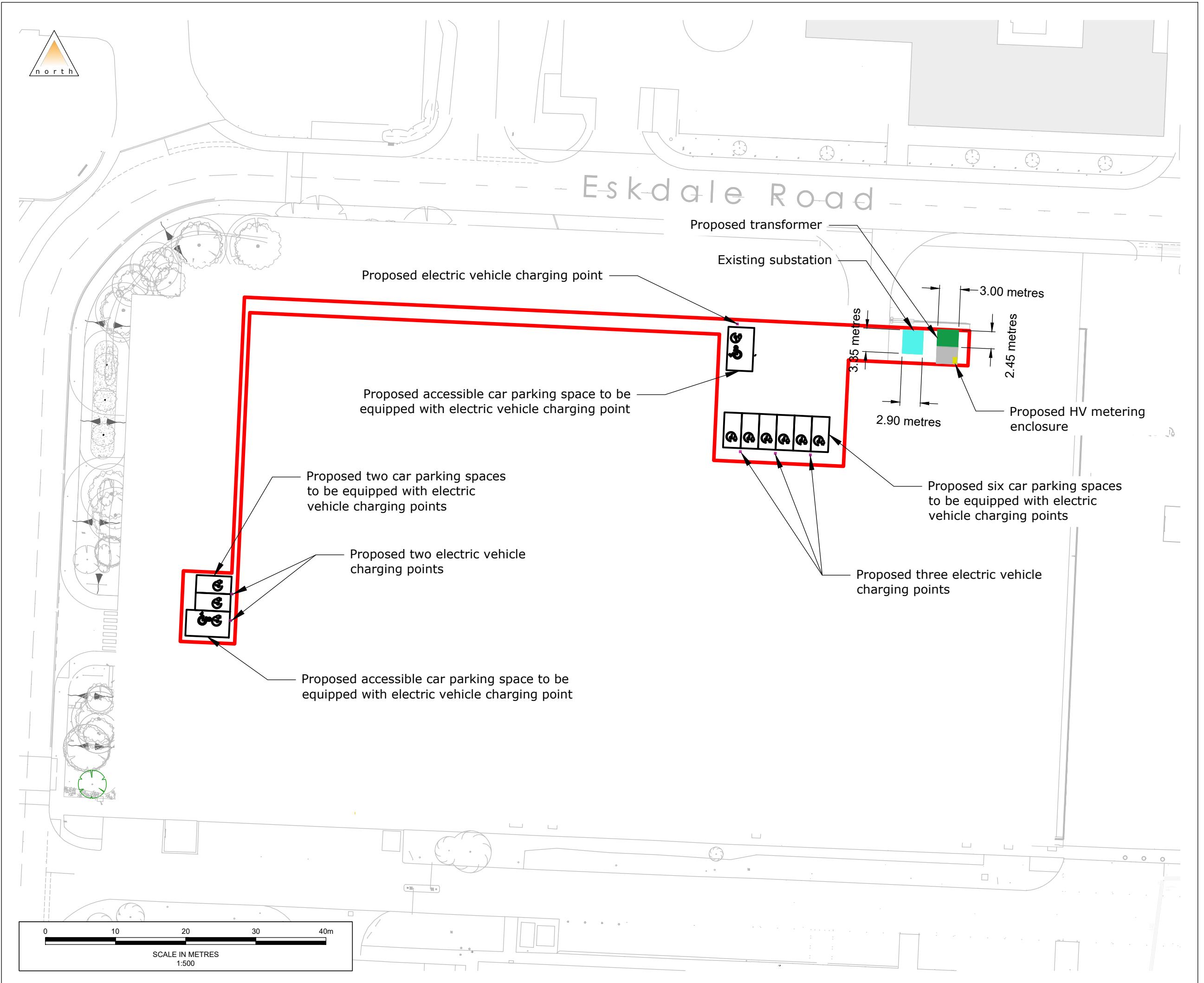
Development Impact on Parking Provision

3.8 The proposed new EV charging points will be provided as the new development proposals for Plot 810. The standard car parking and EV charging provision will be in accordance with the current WBC parking standards. The EV charging points will allow people working in the new Building 810 and visitors the opportunity charge vehicles whilst at this part of the Winnersh Business Park. There will not be any impact of the development on the overall estate parking operation.

4.0 Summary

4.1 This Technical Note has been prepared on behalf of Winnersh Midco S.A.R.L to accompany a planning application relating to development proposals at Winnersh Triangle Plot 810, Winnersh Business Park.

4.2 The new EV charging infrastructure forms part of the 810 Plot which has been subject to a recently submitted planning submission for a new building to replace the existing 810 building. The new parking spaces and transformer/HV metering enclosure will be within a reconfigured car park/service area as part of the application site.


4.3 The EV related development proposals for Plot 810 seek to create new electric vehicle charging points to serve a new building by creating 10 vehicle EV charging points. The new electric vehicle charging facility will be accompanied by a new transformer and HV metering enclosure adjacent to an existing substation in the north-east corner of the site.

4.4 In summary, this Technical Note demonstrates that the proposed new EV charging points and transformer/HV metering enclosure can be accommodated within the park and will comply to current WBC parking standards. This Technical Note also demonstrates that the development proposals will not have an adverse impact on local car parking availability within Winnersh Business Park.

4.5 On the basis of the above, it is concluded that there is no reason why the development proposals should be resisted on traffic or transportation grounds.

Appendix A

Proposed Car Parking Arrangement

Notes

1. All levels and dimensions to be checked on site before any work commences. All dimensions in metres unless stated otherwise.
2. This drawing is based on topographical survey information and Motion cannot guarantee the accuracy of the data provided.
3. This drawing is based on OS mapping and Motion cannot guarantee the accuracy of the data.

Legend

- Site Location Boundary
- Proposed EV Charging Parking Space
- Proposed EV Charging Points
- Proposed Transformer
- Proposed Hardstanding
- Existing Substation
- Proposes HV Metering Enclosure

D	Updated Arrangements	WMC	PdeJ	PdeJ	24/09/2025
C	Added Red Line Boundary	WMC	PdeJ	PdeJ	12/09/2025
B	Updated Arrangements	WMC	PdeJ	PdeJ	12/09/2025
A	Updated Text	WMC	PdeJ	PdeJ	10/09/2025
-	First Issue	WMC	PdeJ	PdeJ	03/09/2025
Rev.	Description	Drn	Chk	Ann	Date

wing Status:

motion
Guildford - Reading - London

Client:
Winnersh Midco S.A.R.L

Project:
Winnersh Triangle 810 EV Chargers
Business Park, Winnersh

Title:

Scale: 1:500 (© A3)

Revision:

Appendix B

RAW Charging – typical EV specification

ELECTRIC VEHICLE (EV) SITE PREPARATION GUIDE

CP6000 – Dual Port – Pedestal and Wall Mounted (External)

Whilst RAW Charging offers a full turnkey design and installation service on every project, integrating with contractors in new build and refurbishment developments at a stage that best suits you are key when delivering multiple refurbishment projects.

The following document serves as a guide for how 3rd party contract teams can utilise their own resources in qualifying and preparing a site for RAW Charging's install partners to bolt down and commission charging stations thereafter.

The information will provide the details and requirements of the minimum standards and expectations of work related to EV charger installation services. In addition to the information provided in this document, all installation teams are directed and instructed to review and reference the relevant ChargePoint installations guides and site ready guides that are most relevant for each piece of ChargePoint hardware.

There is a checklist and sign-off at the bottom of this document that needs to be completed and returned to RAW Charging prior to the installation being confirmed. Any failure to suitably complete the site preparation works which leads to our installation partners requiring a re-visit could incur additional costs.

Contents

Layouts & Positioning	3
Electrical requirements	3
Installation Standards	3
Site Connection Size/Rating	3
Load Study	3
Cable Calculations	4
Harmonics & PF correction	4
Labelling & Identification	4
Datasheet & Circuit Protection	4
Cabling and Circuit Protection	5
Cable Size	5
Circuit Breakers	5
Cable Installation Methods	5
Earthing Arrangement	5
Matt:e O-PEN Device	5
Earth Pit & Rod	6
Metering	6
Testing & Commissioning	7
Ducting Requirements	7
Supply Cable Duct:	7
Earth Cable Duct - Earth pit	7
Foundation Requirements	7
Dimensions and General Arrangements	7
Concrete Foundations – Minimum Requirements	7
Mounting Kits	8
Service Pits	10
Vehicle Protection	10
Protection Barriers	11
Wheel Stops	12
Site Preparation Completion Sign-Off	13

Please note writing in:

Purple relates specifically to wall-mounted units

Green relates specifically to pedestal-mounted units

Layouts & Positioning

Electric Vehicle Charging Point (EVCP)'s must be positioned in order not to block:

- Existing footpaths
- Access and egress routes
- Emergency escape routes

If situated on an existing footpath, to allow for wheelchairs to pass, there must still be a minimum width of 1500mm from the rear of the EVCP. If this cannot be achieved, exceptional cases may allow a minimum width of 1000mm, but this must be checked with local legislation and the Employer.

As the dual port chargers service (2x) parking/charging bays, they should be positioned at the centre line of the two bays it is servicing.

For example, see the (3x) dual ports chargers below, servicing (6x) parking bays.

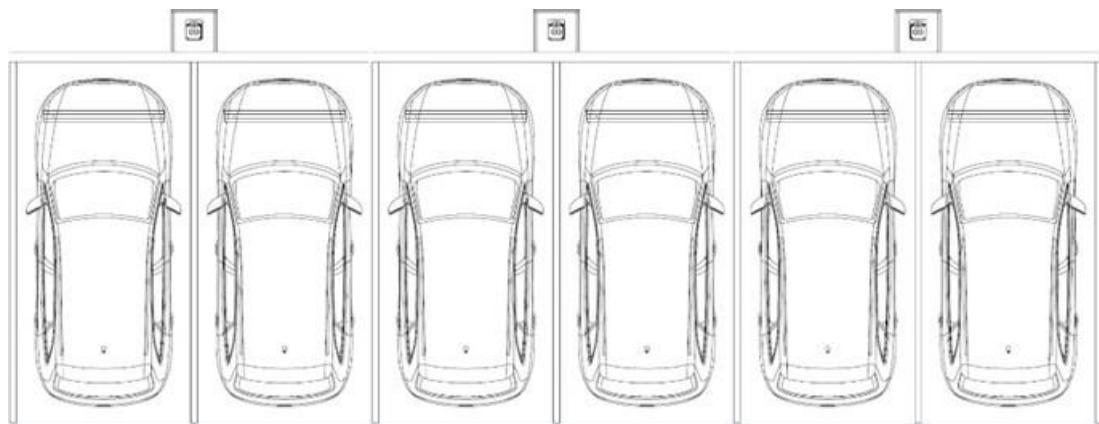


FIGURE 1: INDICATIVE 6 BAY LAYOUT

Electrical requirements

Installation Standards

EV charging points must be installed in accordance with BS7671 18th edition giving particular attention to section 722. In addition to this the following should be adhered to: Institution of Engineering & Technology Code of Practice for Electric Vehicle Charging Equipment Installation, 4th Edition.

Site Connection Size/Rating

To ensure reliability of supply the site connection size and rating of all associated equipment must be confirmed to ensure that the system cannot be overloaded due to the addition of additional EV charging points.

Load Study

A load study must be performed to ensure charging points do not pose a risk to core business supply. In the event that the current loading of the MDB is not known a load study must be carried out giving particular attention to times of peak usage, peak usage will be dependent on the nature of the business and operating hours. Seasonal changes will need to be considered.

Cable Calculations

Calculations must be performed for all new cables and devices to ensure cable selection is adequate, it is not enough to assume that minimum cable size in guidance below is acceptable as length of run and installation methods will vary from site to site

Harmonics & PF correction

The Installer must ensure that the installation meets the requirements of BS EN IEC 61000-6-3 EMC compatibility & BS 7671.

Labelling & Identification

All cables and devices must be labelled in accordance to previously used labelling system on site. In the event that labelling has not been carried out on the installation then a suitable labelling method must be adapted to ensure installation is clearly identified.

Datasheet & Circuit Protection

See the below table, showing the electrical requirements for the various configurations of the CP6000 dual port charger. **Note** - All chargers are 22kW 3-phase capable but will be installed as Circuit-shared and might not be at full capacity.

Three-Phase Electrical Input (3Ø)

Electrical input	Dual port		
	Input current	Input power connection	Minimum service panel breaker
Standard 63A 3Ø Circuit Shared*	3Ø 63A	One 3Ø 63A branch circuit	63A 4 pole
Standard 32A 3Ø	3Ø 32A x 2	Two independent 3Ø 32A branch circuits	32A 4 pole x 2
Standard 32A 3Ø Circuit Shared*	3Ø 32A	One 3Ø 32A branch circuit	32A 4 pole
Power Select 25A 3Ø	3Ø 25A x 2	Two independent 3Ø 25A branch circuits	25A 4 pole x 2
Power Select 25A 3Ø Circuit Shared*	3Ø 25A	One 3Ø 25A branch circuit	25A 4 pole
Power Select 20A 3Ø	3Ø 20A x 2	Two independent 3Ø 20A branch circuits	20A 4 pole x 2
Power Select 20A 3Ø Circuit Shared*	3Ø 20A	One 3Ø 20A branch circuit	20A 4 pole
Power Select 16A 3Ø	3Ø 16A x 2	Two independent 3Ø 16A branch circuits	16A 4 pole x 2
Power Select 16A 3Ø Circuit Shared*	3Ø 16A	One 3Ø 16A branch circuit	16A 4 pole
Power Select 12A 3Ø	3Ø 12A x 2	Two independent 3Ø 12A branch circuits	12A 4 pole x 2

Single Phase Electrical Input (1Ø)

Electrical input	Dual port		
	Input current	Input power connection	Minimum service panel breaker
Standard 63A 1Ø Circuit Shared*	1Ø 63A	One 1Ø 63A branch circuit	63A dual pole
Standard 32A 1Ø	1Ø 32A x 2	Two independent 1Ø 32A branch circuits	32A dual pole x 2
Standard 32A 1Ø Circuit Shared*	1Ø 32A	One 1Ø 32A branch circuit	32A dual pole
Power Select 25A 1Ø	1Ø 25A x 2	Two independent 1Ø 25A branch circuits	25A dual pole x 2
Power Select 25A 1Ø Circuit Shared*	1Ø 25A	One 1Ø 25A branch circuit	25A dual pole
Power Select 20A 1Ø	1Ø 20A x 2	Two independent 1Ø 20A branch circuits	20A dual pole x 2
Power Select 20A 1Ø Circuit Shared*	1Ø 20A	One 1Ø 20A branch circuit	20A dual pole
Power Select 16A 1Ø	1Ø 16A x 2	Two independent 1Ø 16A branch circuits	16A dual pole x 2
Power Select 16A 1Ø Circuit Shared*	1Ø 16A	One 1Ø 16A branch circuit	16A dual pole
Power Select 12A 1Ø	1Ø 12A x 2	Two independent 1Ø 12A branch circuits	12A dual pole x 2

FIGURE 2: CP6000 DUAL PORT CHARGER CONFIGURATIONS

Cabling and Circuit Protection

Cable Size

At minimum 10mm SWA cable per charger shall be used installed. For a Matt:e device a 5 core cable should be used.

Cable calculations must be performed to determine the correct cable to use (considering the voltage drop and grouping factors). The maximum diameter of the cable entering the charger is 16mm.

- At each pedestal-mounted charger, 2m+ cabling must be left protruding from the duct to allow for connection within each charger

Circuit Breakers

A 40Amp MCB should be installed at the distribution board upstream of the 32Amp RCBOs within the charger to be installed.

Ideally, to allow for expansion of chargers in future, install a dedicated 6 Way 3 phase distribution board: 100 to 250Amp depending on the available capacity and site requirements.

Miniature Circuit Breaker's (MCB's) must be Type C curve.

The MCB's must be able to isolate all lives and the neutral within the board, if on a TT system.

Note that the CP6000 range of AC stations are fitted with internal 30mA Type A RCCBs (one per port) in conjunction with internal 6mA DC earth leakage monitoring, removing the need for upstream Type B RCD.

Cable Installation Methods

For all or part of the route there may be a combination of cable routing via voids, ducts, cable trays etc. The selected method(s) of installation and route should be agreed in advance to ensure that it is aesthetically pleasing and is unlikely to cause obstruction in the future. All installation methods must comply with BS7671 & manufacturers recommendations.

Earthing Arrangement

Section 722 of BS7671:2018 gives specific installation requirements for Electric Vehicle chargers, when it comes to earthing, and states that when a charging station is installed outdoors the Protective Multiple Earth (PME) from a TN-C-S supply scheme must **not** be used. Usually, the above regulation results in the need for a localized TT earth spike or a Matt:e O-PEN device to be installed, converting the installation to a TT supply scheme. We strongly recommend a Matt:e device over using a TT earth spike.

Matt:e O-PEN Device

An earth rod is not able to be installed in circumstances due to;

- Surface type (not able to excavate or poor soil resistivity)
- Too close to the building foundations (which could result in the rod picking up the buildings PME)
- Within touching distance of other electrical street furniture (lampposts, ticket machines, etc.)
- Charging units are wall-mounted so connecting to an earth pit is awkward

In these circumstances, a Matt:e O-PEN device must be installed as the earthing system. This needs to be connected to the charger using 5 core SWA cable. Should more than one charger be installed they should ideally be earthed back to a single O-PEN device (up to a maximum of 3 chargers per unit currently). Please refer to Institution of Engineering & Technology Code of Practice for Electric Vehicle Charging Equipment Installation, 4th Edition for further recommendations on the use of O-PEN Device.

Earth Pit & Rod

FIGURE 3: LOCALIZED TT EARTH SPIKE

When installing an earth spike, you must check there are no underlying services below the earthing to facilitate the sinking of the earthing rods.

If installing more than one charger (within the same equipotential zone), they should all be earthed back to a **single** pit.

To allow for an easier and more secure connection, a Star Bar should be installed (horizontally across the pit). See example below.

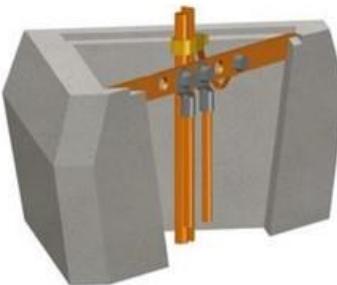


FIGURE 4: EARTHING STAR BAR EXAMPLE

Metering

Where the installation forms part of an existing installation independent metering is required at the core business distribution board and charging distribution board. Metering should be installed in accordance to Metering COP5.

Testing & Commissioning

The Contractor must complete IR & continuity tests on all circuits prior to requesting permission to energise. This includes testing of earth mat where installed.

The Contractor must perform controlled energisation of all circuits ensuring that all settings are implemented as required. In addition to installation test certificate, testing of O-PEN device must be carried out and certificate provided.

Ducting Requirements

Supply Cable Duct:

Continuous twin wall duct to be installed, for the entirety of the cable run underground. Each charger shall have an independent 75mm duct. **Cables are brought up from the independent duct to the charger pedestal.**

The duct is to be laid at a minimum depth of 450mm, except on roadways where a minimum depth of 600mm is required.

Ducting size and layout are dependent on cable calculations (considering voltage drop and grouping factors).

The duct must enter the foundation at the dimensions shown in the 'Concrete Foundations' section.

Electrical warning tape must be laid above the ducting, when backfilling the trench.

Draw cord must be left inside the ducting, to allow to the cable to be pulled into position.

Draw pits must be installed on longer runs or where there is a change of direction to ensure cables can be installed without risk of damage.

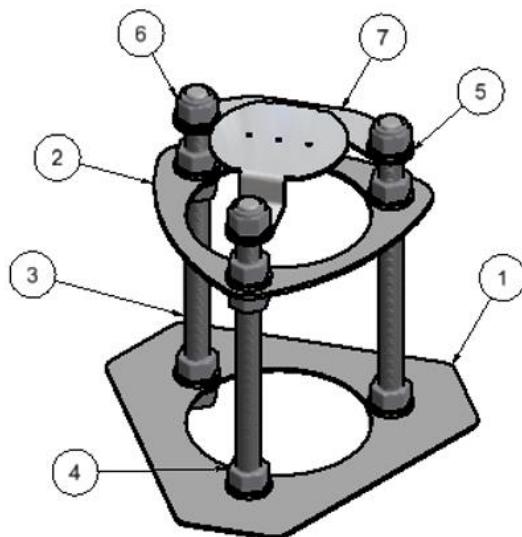
Earth Cable Duct - Earth pit

Continuous twin wall duct (50mm diameter) to be installed, for the entirety of the cable run (from the concrete foundation to the earth pit) to cater for the 10mm earth cable.

The duct should protrude from the ground within the hole of the charger mounting bracket.

Foundation Requirements

Dimensions and General Arrangements

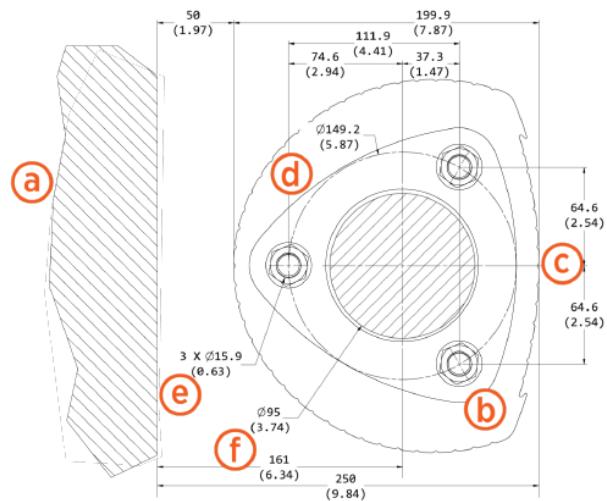

See the below diagrams, showing the default concrete foundation dimensions and arrangement of street furniture. Take note of the placement of bollards and ground mounts for the pedestal of the CP4K units. Should this **not be possible** you must contact RAW Operations to discuss the change.

Concrete Foundations – Minimum Requirements

- Grade C30 concrete must be used for the foundation
- Ensure that the top surface of the foundation is flush to any paving and sits level with surrounding area. Nothing should be protruding.

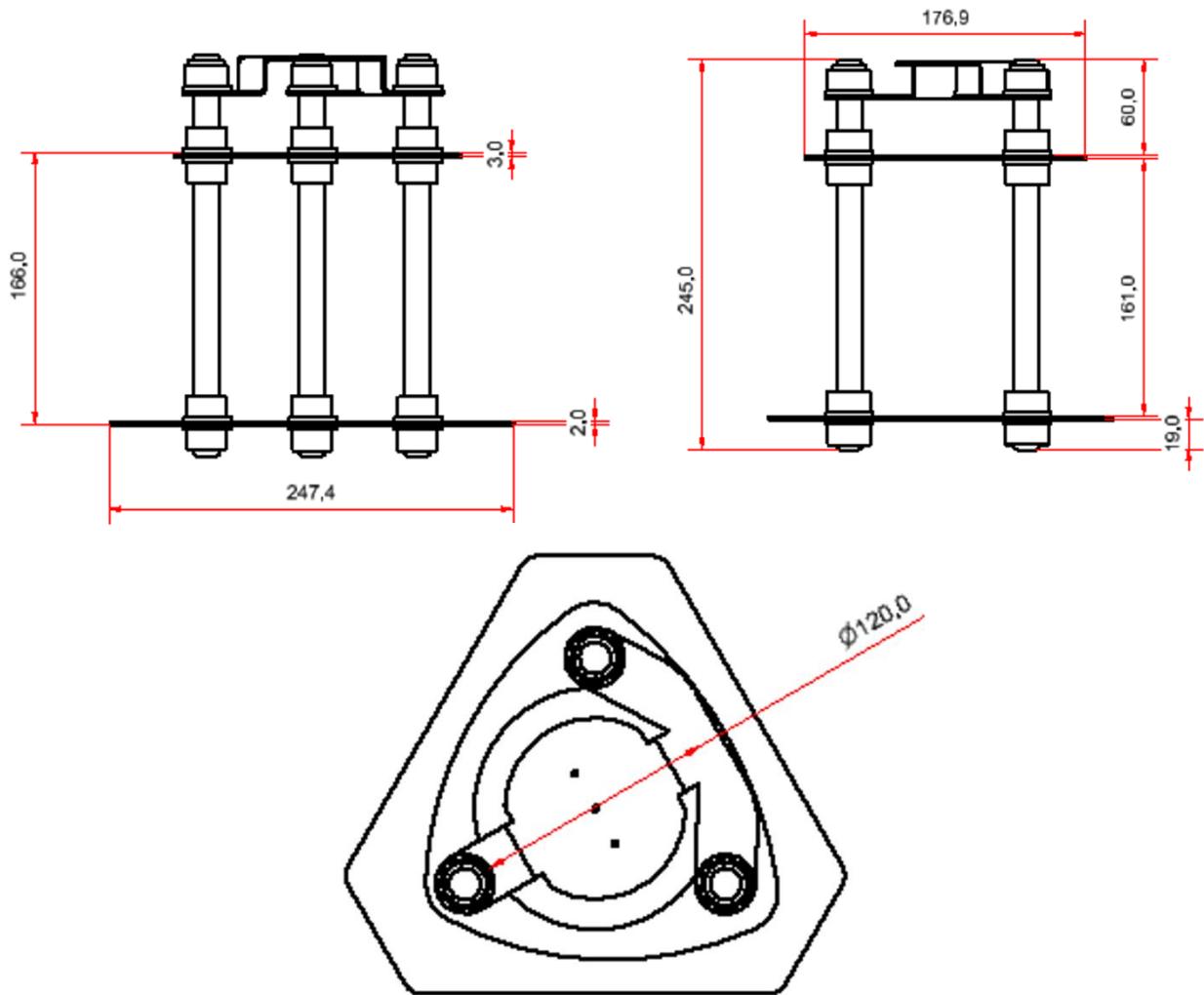
Mounting Kits

Before pouring the concrete foundation, the Contractor must ensure that it has the 'Pedestal Mounting Kit' (provided to the Contractor by RAW) ready on site. You must order this with sufficient lead time before site construction. This will need to be set into the concrete foundation and is shipped separately. **Please contact RAW if you have not received this. Note this is not required for Make Ready units.**



Parts List		
ITEM	QTY	PART NUMBER
1	1	EPM-4Y 1-1 Bottom Plate
2	1	EPM-4Y 1-2 Top Plate
3	3	M16 studding 245mm lg
4	12	M16 nut
5	15	M16 washer
6	3	M16 nyloc
7	1	EPX-2G 1-1 Glanding Plt

FIGURE 6: PEDESTAL MOUNTING KIT PARTS


The Contractor shall fit the mounting kit in accordance with the following instructions:

- Trench and excavate an opening to accommodate the wiring conduit and the concrete mounting pad. Run conduit to each station as needed.
- Build the form and lay rebar for the foundation. The concrete block must measure at least 600mm on all sides. The conduit stub-up needs to measure between 152mm and 590mm above the concrete surface.
- Align the Pedestal Mounting Kit over the conduit stub-ups with the two bolts facing forwards and the third bolt to the rear. Slide the kit over the conduit stub-ups until the top surface of the template is level with the top surface of the concrete when poured. The surface of the concrete must align with the bottom of the upper template.
- Ensure the conduits are plumb. Before pouring concrete, tie the mounting kit to rebar to hold it in place. The mounting kit and conduit must be secured in place to prevent them from rising or floating out of position while the concrete is curing.
- Use a spirit level and ensure level from front to back and side to side. Ensure correct alignment and that the top 60 mm of the bolts remain exposed, as shown in Fig 9. The CP6000 pedestal mounted charging station can now be installed onto the foundation.

Pedestal Mount without Cable Management Kit Template Dimensions

- a. Wall
- b. Pedestal footprint
- c. Front
- d. Bolt circle
- e. Bolt or anchor
- f. Conduit stub-up within this area

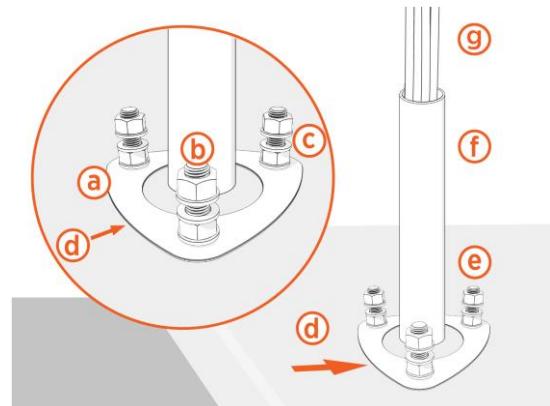
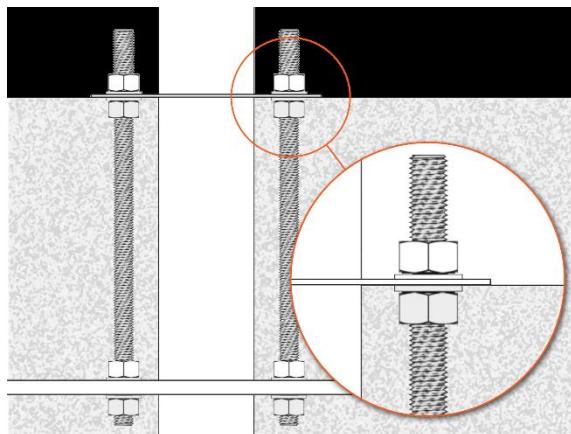


FIGURE 7: PEDESTAL MOUNT TEMPLATE DIMENSIONS


FIGURE 8: PEDESTAL MOUNTING KIT DETAILS

The following should be visible for the installation to occur:

- a) Concrete mounting template
- b) Three bolts set into concrete
- c) Two nuts and three washers on each bolt
- d) Template front
- e) Each bolt extending 60 mm (2 1/3 in) to 100 mm (4 in) above the concrete surface
- f) Conduit stub-up measuring 152 mm (6 in) to 590 mm (2 ft)
- g) g. Approximately 1.5 m (5 ft) of service wiring

FIGURE 9: SITE PREPARATION HANDOVER

FIGURE 10: CONCRETE ALIGNMENT WITH UPPER TEMPLATE

Service Pits

Depending on the length or route of the cable run (underground), service pits may be required to be installed. This is true for the below situations:

- Any bends or corners in the route, service pit must be installed at these points
- Longer distance runs, service pits must also be installed every 25m – 30m.

The service pits must be a minimum of 600mm x 600mm square.

Vehicle Protection

Equipment installed in public areas and car park sites shall be protected against mechanical damage (impact of medium severity AG2). Protection of the equipment shall be afforded by one or more of the following:

- The position or location shall be selected to avoid damage by any reasonably foreseeable impact

- Local or general mechanical protection shall be provided
- Equipment shall be installed that complies with a minimum degree of protection against external mechanical impact of IK07 in accordance with BS EN 62262.

Two recommended options are protective barriers and wheel stops – see details below.

Note: no protection is required for make-ready units

Protection Barriers

Protection barriers are not provided by RAW Charging unless specified.

2no stainless steel posts are to be set directly into the concrete pad (see dimensions above, in the 'Concrete Foundations' section), to prevent cars from driving in to the EVCP.

Semi Dome Top Posts in Grade 304 stainless steel, with length 1200mm, diameter 114mm and a brushed finish to a 1K standard. 3-6mm Wall thickness.

FIGURE 5: STAINLESS STEEL PROTECTION POSTS

Make-Ready units will have bolted bollards or wheel stops.

Wheel Stops

In some circumstances, wheel stops may be used as crash protection for the EVCP. This may be in addition to the protective bollards, or in their place.

To protect the EVCP from all vehicle models (all of which have various front and rear bumper overhangs), the wheel stop must be placed 1100mm in front of the charger (or protective bollards, if they are in place), as indicated below.

1.8m wheelstops are to be placed centred on the parking bay to cover both wheels. 0.9m wheelstops are to be placed aligned to the side of the parking bay closest to the charging unit.

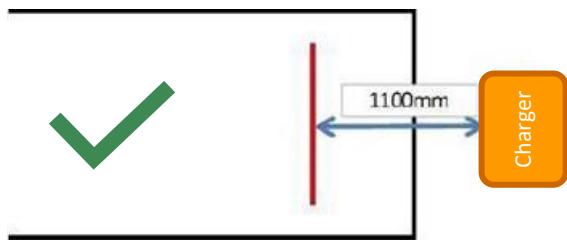


FIGURE 11: WHEEL STOP ARRANGEMENTS (1.8M WHEELSTOPS)

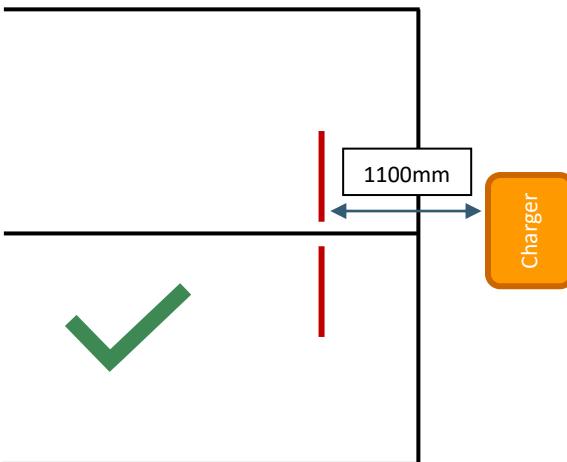
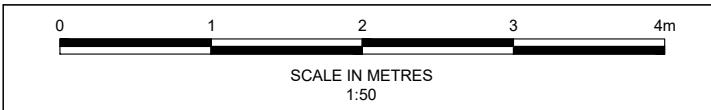
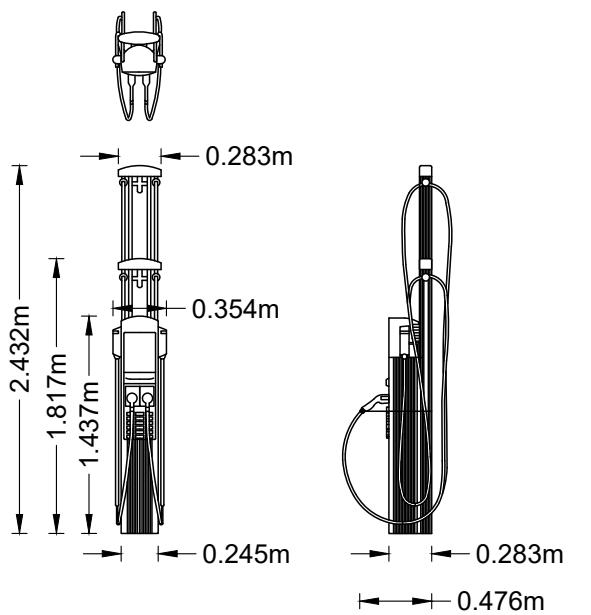


FIGURE 12: WHEEL STOP ARRANGEMENTS (0.9M WHEELSTOPS)

Site Preparation Completion Sign-Off



Please ensure that all the below requirements are completed prior to the installation and provide signature below to confirm before we send our installation partner to site:

Requirement	Completed
The correct cable type has been installed and is of suitable diameter based on cable calculations	
The cable diameter is less than 16mm at the point of entry into the charger	
A suitable cable length has been left available at the foundation (2m protruding from concrete foundation)	
The cable has been suitably capped	
All of the installed electrical system is rated to the correct specification as stated in this guide and to BS7671 18 th edition	
A suitable earthing system has been installed (Matt:e, Earth pit or approved alternative)	
Concrete foundation(s) with suitable ducting and ground mount are installed (level and with a good finish) and are in the correct location	
Suitable charger protection has been installed (Bollards, Wheelstops or suitable alternative)	
The site has a suitable power supply and is able to be energised during the installation and commission	
The electrical system has been correctly and suitably tested	
There will be an electrician/qualified person to energise the chargers whilst our installation partner is on-site for the installation and commission	
Photos of the completed site preparation works have been provided to RAW Charging: <ul style="list-style-type: none"> - Photo of concrete base with ground mount fixed - Photo of installed protection - Photo of installed earthing system - Photo of electrical infrastructure including supply distribution board 	

Name:	Job Title:
Signature:	Date:

Appendix C

Transformer Floor Plan, Elevations and upstand drawings

Notes

1. All levels and dimensions to be checked on site before any work commences. All dimensions in metres unless stated otherwise.
2. This drawing is based on topographical survey information and Motion cannot guarantee the accuracy of the data provided.

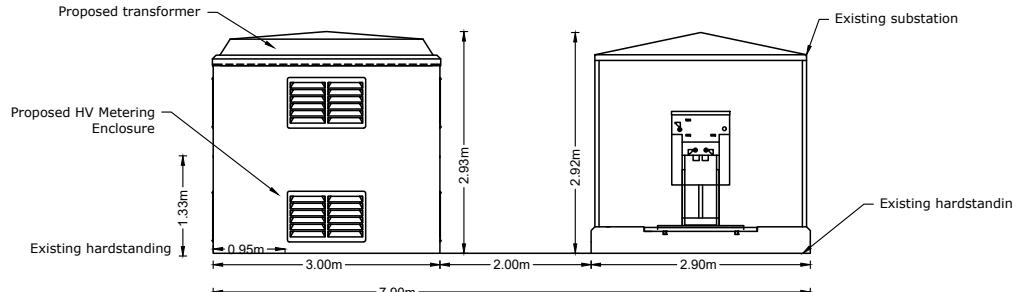
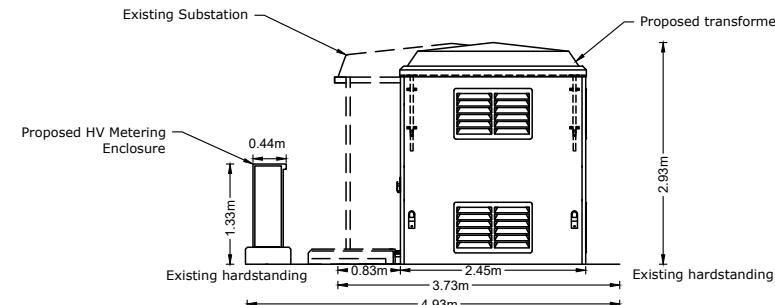
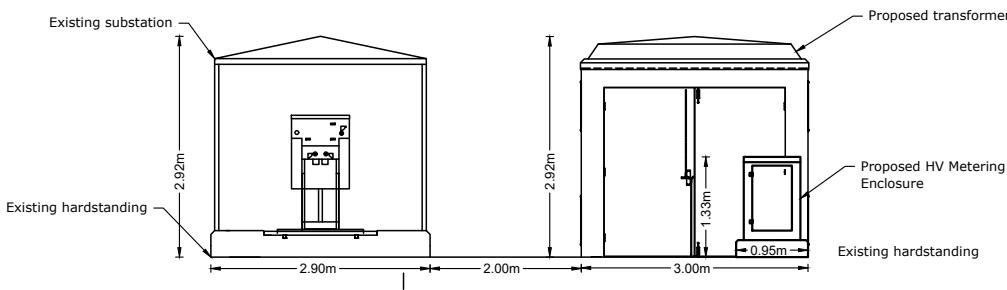
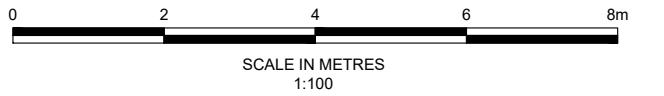
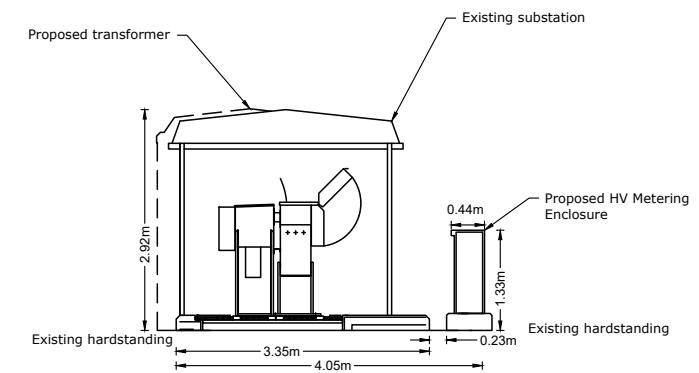
First Issue	RW	WMC	PdeJ	04/09/2025
Rev. Description	Dm	Chk	App	Date

Drawing Status:

FOR PLANNING
NOT FOR CONSTRUCTION

motion
Guildford - Reading - London
www.motion.co.uk

Client:
Winnersh Midco S.A.R.L






Project:
Winnersh Triangle 810 EV Chargers

Title:
Proposed Upstands

Scale: 1:50 (@ A3)

Drawing: 2207015-206

Revision: -

North Elevation**East Elevation****South Elevation****West Elevation****Notes**

1. All levels and dimensions to be checked on site before any work commences. All dimensions in metres unless stated otherwise.
2. This drawing is based on topographical survey information and Motion cannot guarantee the accuracy of the data provided.
3. This drawing is based on OS mapping and Motion cannot guarantee the accuracy of the data.

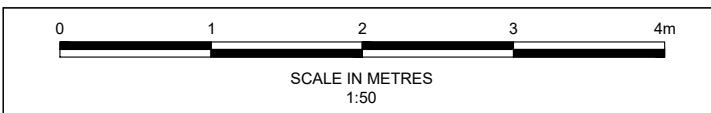
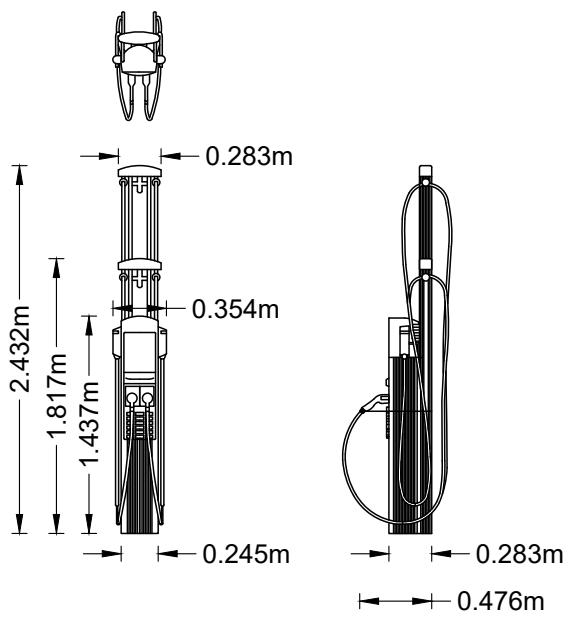
A	Updated Elevations	WMC	PdeJ	PdeJ	24/09/2025
-	First Issue	WMC	PdeJ	PdeJ	03/09/2025
Rev. Description	Dm	Chk	App	Date	

Drawing Status:

FOR PLANNING
NOT FOR CONSTRUCTION

motion
Guildford - Reading - London
www.motion.co.uk

Client:
Winnersh Midco S.A.R.L



Project:
Winnersh Triangle 810 EV Chargers
Business Park, Winnersh

Title:
Proposed Elevations

Scale: 1:100 (@ A3)

Drawing: 2207015-205

Revision: A

Notes

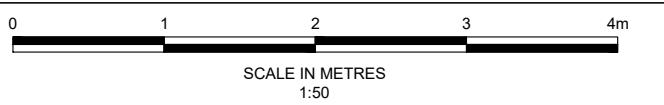
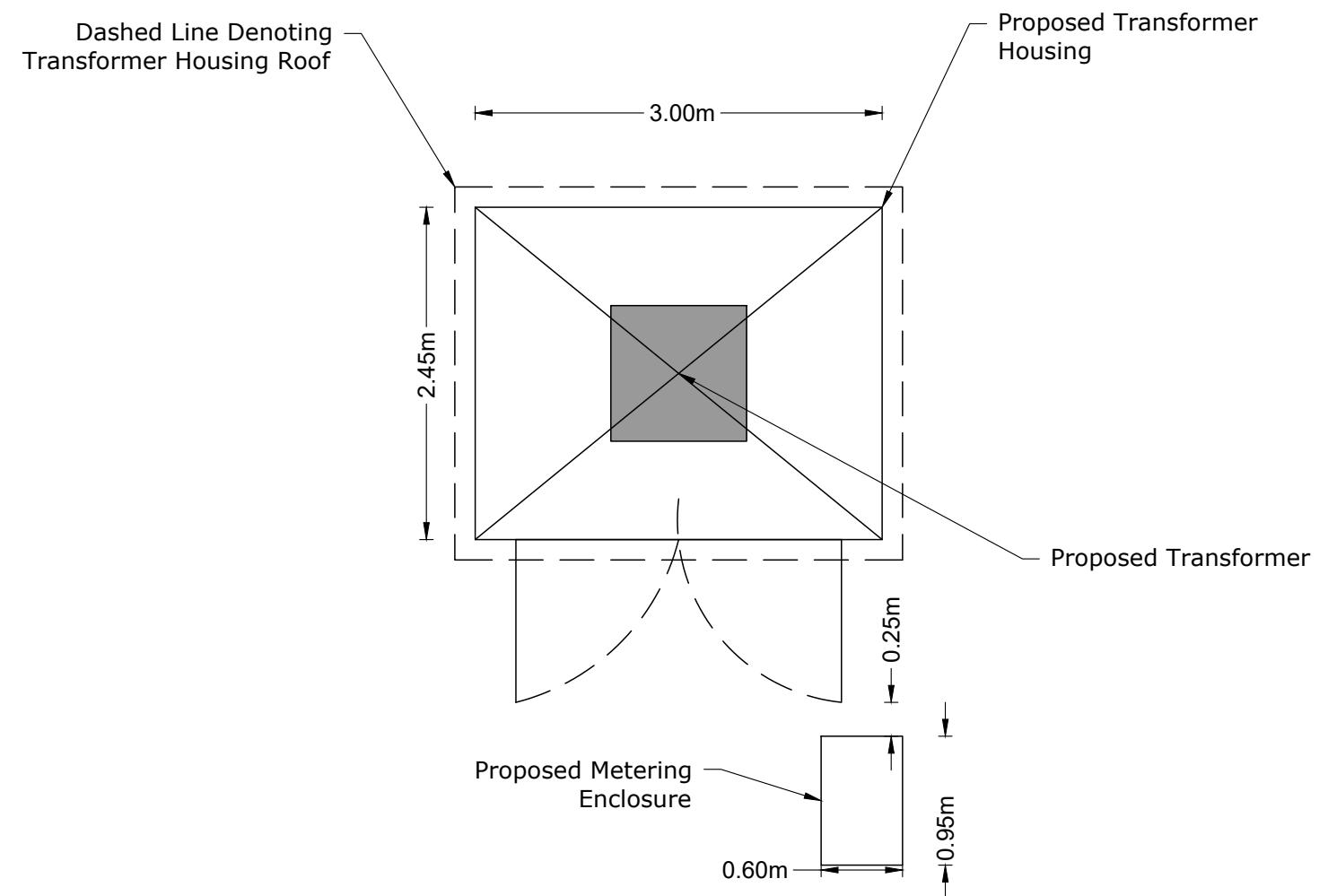
1. All levels and dimensions to be checked on site before any work commences. All dimensions in metres unless stated otherwise.
2. This drawing is based on topographical survey information and Motion cannot guarantee the accuracy of the data provided.

- First Issue RW WMC PdJ 04/09/2025
Rev. Description Dm Chk App Date

Drawing Status:
FOR PLANNING
NOT FOR CONSTRUCTION

motion
Guildford - Reading - London
www.motion.co.uk

Client:
Winnersh Midco S.A.R.L



Project:
Winnersh Triangle 810 EV Chargers

Title:
Proposed Upstands

Scale: 1:50 (@ A3)

Drawing: 2207015-206

Revision: -

Notes

1. All levels and dimensions to be checked on site before any work commences. All dimensions in metres unless stated otherwise.
2. This drawing is based on topographical survey information and Motion cannot guarantee the accuracy of the data provided.
3. This drawing is based on OS mapping and Motion cannot guarantee the accuracy of the data.

A Rotated Drawing WMC PdeJ PdeJ 24/09/2025
- First Issue WMC PdeJ PdeJ 24/09/2025
Rev. Description Dm Chk App Date

Drawing Status:
FOR PLANNING
NOT FOR CONSTRUCTION

motion
Guildford - Reading - London
www.motion.co.uk

Client:
Winnersh Midco S.A.R.L

Project:
Winnersh Triangle 810 EV Chargers
Business Park, Winnersh

Title:
Proposed Transformer Floor Plan

Scale: 1:500 (@ A3)

Drawing: 2207015-207

Revision: A